File: survtab.Rd

package info (click to toggle)
r-cran-popepi 0.4.13%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,656 kB
  • sloc: sh: 13; makefile: 2
file content (331 lines) | stat: -rw-r--r-- 12,842 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/survival_lexis.R
\name{survtab}
\alias{survtab}
\title{Estimate Survival Time Functions}
\usage{
survtab(
  formula,
  data,
  adjust = NULL,
  breaks = NULL,
  pophaz = NULL,
  weights = NULL,
  surv.type = "surv.rel",
  surv.method = "hazard",
  relsurv.method = "e2",
  subset = NULL,
  conf.level = 0.95,
  conf.type = "log-log",
  verbose = FALSE
)
}
\arguments{
\item{formula}{a \code{formula}; e.g. \code{fot ~ sex},
where \code{fot} is the time scale over which you wish to estimate a
survival time function; this
assumes that \code{lex.Xst} in your data is the status variable in the
intended format (almost always right).
To be explicit, use \verb{[survival::Surv]}: e.g.
\code{Surv(fot, lex.Xst) ~ sex}.
Variables on the right-hand side of the formula
separated by \code{+} are considered stratifying variables, for which
estimates are computed separately. May contain usage of \code{adjust()}
--- see Details and Examples.}

\item{data}{a \code{Lexis} object with at least the survival time scale}

\item{adjust}{can be used as an alternative to passing variables to
argument \code{formula} within a call to \code{adjust()}; e.g.
\code{adjust = "agegr"}. \link[=flexible_argument]{Flexible input}.}

\item{breaks}{a named list of breaks, e.g.
\code{list(FUT = 0:5)}. If data is not split in advance, \code{breaks}
must at the very least contain a vector of breaks to split the survival time
scale (mentioned in argument \code{formula}). If data has already been split
(using e.g. \verb{[splitMulti]}) along at least the used survival time
scale, this may be \code{NULL}. It is generally recommended (and sufficient;
see Seppa, Dyban and Hakulinen (2015)) to use monthly
intervals where applicable.}

\item{pophaz}{a \code{data.frame} containing
expected hazards for the event of interest to occur. See the
\link[=pophaz]{dedicated help page}. Required when
\code{surv.type = "surv.rel"} or \code{"cif.rel"}. \code{pophaz} must
contain one column named \code{"haz"}, and any number of other columns
identifying levels of variables to do a merge with split data within
\code{survtab}. Some columns may be time scales, which will
allow for the expected hazard to vary by e.g. calendar time and age.}

\item{weights}{typically a list of weights or a \code{character} string
specifying an age group standardization scheme; see
the \link[=direct_standardization]{dedicated help page}
and examples. NOTE: \code{weights = "internal"} is based on the counts
of persons in follow-up at the start of follow-up (typically T = 0)}

\item{surv.type}{one of \code{'surv.obs'},
\code{'surv.cause'}, \code{'surv.rel'},
\code{'cif.obs'} or \code{'cif.rel'};
defines what kind of survival time function(s) is/are estimated; see Details}

\item{surv.method}{either \code{'lifetable'} or \code{'hazard'}; determines
the method of calculating survival time functions, where the former computes
ratios such as \code{p = d/(n - n.cens)}
and the latter utilizes subject-times
(typically person-years) for hazard estimates such as \code{d/pyrs}
which are used to compute survival time function estimates.
The former method requires argument \code{n.cens} and the latter
argument \code{pyrs} to be supplied.}

\item{relsurv.method}{either \code{'e2'} or \code{'pp'};
defines whether to compute relative survival using the
EdererII method or using Pohar-Perme weighting;
ignored if \code{surv.type != "surv.rel"}}

\item{subset}{a logical condition; e.g. \code{subset = sex == 1};
subsets the data before computations}

\item{conf.level}{confidence level used in confidence intervals;
e.g. \code{0.95} for 95 percent confidence intervals}

\item{conf.type}{character string; must be one of \code{"plain"},
\code{"log-log"} and \code{"log"};
defines the transformation used on the survival time
function to yield confidence
intervals via the delta method}

\item{verbose}{logical; if \code{TRUE}, the function is chatty and
returns some messages and timings along the process}
}
\value{
Returns a table of life time function values and other
information with survival intervals as rows.
Returns some of the following estimates of survival time functions:

\itemize{
\item \code{surv.obs} - observed (raw, overall) survival
\item \code{surv.obs.K} - observed cause-specific survival for cause K
\item \code{CIF_k} - cumulative incidence function for cause \code{k}
\item \code{CIF.rel} - cumulative incidence function using excess cases
\item \code{r.e2} -  relative survival, EdererII
\item \code{r.pp} -  relative survival, Pohar-Perme weighted
}
The suffix \code{.as} implies adjusted estimates, and \code{.lo} and
\code{.hi} imply lower and upper confidence limits, respectively.
The prefix \code{SE.} stands for standard error.
}
\description{
This function estimates survival time functions: survival,
relative/net survival, and crude/absolute risk functions (CIF).
}
\section{Basics}{


This function computes interval-based estimates of survival time functions,
where the intervals are set by the user. For product-limit-based
estimation see packages \pkg{survival} and \pkg{relsurv}.

if \code{surv.type = 'surv.obs'}, only 'raw' observed survival
is estimated over the chosen time intervals. With
\code{surv.type = 'surv.rel'}, also relative survival estimates
are supplied in addition to observed survival figures.

\code{surv.type = 'cif.obs'} requests cumulative incidence functions (CIF)
to be estimated.
CIFs are estimated for each competing risk based
on a survival-interval-specific proportional hazards
assumption as described by Chiang (1968).
With \code{surv.type = 'cif.rel'}, a CIF is estimated with using
excess cases as the ''cause-specific'' cases. Finally, with
\code{surv.type = 'surv.cause'}, cause-specific survivals are
estimated separately for each separate type of event.

In hazard-based estimation (\code{surv.method = "hazard"}) survival
time functions are transformations of the estimated corresponding hazard
in the intervals. The hazard itself is estimated using counts of events
(or excess events) and total subject-time in the interval. Life table
\code{surv.method = "lifetable"} estimates are constructed as transformations
of probabilities computed using counts of events and counts of subjects
at risk.

The vignette \href{../doc/survtab_examples.html}{survtab_examples}
has some practical examples.
}

\section{Relative survival}{


When \code{surv.type = 'surv.rel'}, the user can choose
\code{relsurv.method = 'pp'}, whereupon Pohar-Perme weighting is used.
By default \code{relsurv.method = 'e2'}, i.e. the Ederer II method
is used to estimate relative survival.
}

\section{Adjusted estimates}{


Adjusted estimates in this context mean computing estimates separately
by the levels of adjusting variables and returning weighted averages
of the estimates. For example, computing estimates separately by
age groups and returning a weighted average estimate (age-adjusted estimate).

Adjusting requires specification of both the adjusting variables and
the weights for all the levels of the adjusting variables. The former can be
accomplished by using \code{adjust()} with the argument \code{formula},
or by supplying variables directly to argument \code{adjust}. E.g. the
following are all equivalent:

\code{formula = fot ~ sex + adjust(agegr) + adjust(area)}

\code{formula = fot ~ sex + adjust(agegr, area)}

\verb{formula  = fot ~ sex, adjust = c("agegr", "area")}

\verb{formula  = fot ~ sex, adjust = list(agegr, area)}

The adjusting variables must match with the variable names in the
argument \code{weights};
see the \link[=direct_standardization]{dedicated help page}.
Typically weights are supplied as a \code{list} or
a \code{data.frame}. The former can be done by e.g.

\code{weights = list(agegr = VEC1, area = VEC2)},

where \code{VEC1} and \code{VEC2} are vectors of weights (which do not
have to add up to one). See
\href{../doc/survtab_examples.html}{survtab_examples}
for an example of using a \code{data.frame} to pass weights.
}

\section{Period analysis and other data selection schemes}{


To calculate e.g. period analysis (delayed entry) estimates,
limit the data when/before supplying to this function.See
\href{../doc/survtab_examples.html}{survtab_examples}.
}

\examples{
\donttest{
data("sire", package = "popEpi")
library(Epi)

## NOTE: recommended to use factor status variable
x <- Lexis(entry = list(FUT = 0, AGE = dg_age, CAL = get.yrs(dg_date)),
           exit = list(CAL = get.yrs(ex_date)),
           data = sire[sire$dg_date < sire$ex_date, ],
           exit.status = factor(status, levels = 0:2,
                                labels = c("alive", "canD", "othD")),
           merge = TRUE)

## phony group variable
set.seed(1L)
x$group <- rbinom(nrow(x), 1, 0.5)

## observed survival. explicit supplying of status:
st <- survtab(Surv(time = FUT, event = lex.Xst) ~ group, data = x,
              surv.type = "surv.obs",
              breaks = list(FUT = seq(0, 5, 1/12)))
## this assumes the status is lex.Xst (right 99.9 \% of the time)
st <- survtab(FUT ~ group, data = x,
              surv.type = "surv.obs",
              breaks = list(FUT = seq(0, 5, 1/12)))

## relative survival (ederer II)
data("popmort", package = "popEpi")
pm <- data.frame(popmort)
names(pm) <- c("sex", "CAL", "AGE", "haz")
st <- survtab(FUT ~ group, data = x,
              surv.type = "surv.rel",
              pophaz = pm,
              breaks = list(FUT = seq(0, 5, 1/12)))

## ICSS weights usage
data("ICSS", package = "popEpi")
cut <- c(0, 30, 50, 70, Inf)
agegr <- cut(ICSS$age, cut, right = FALSE)
w <- aggregate(ICSS1~agegr, data = ICSS, FUN = sum)
x$agegr <- cut(x$dg_age, cut, right = FALSE)
st <- survtab(FUT ~ group + adjust(agegr), data = x,
              surv.type = "surv.rel",
              pophaz = pm, weights = w$ICSS1,
              breaks = list(FUT = seq(0, 5, 1/12)))

#### using dates with survtab
x <- Lexis(entry = list(FUT = 0L, AGE = dg_date-bi_date, CAL = dg_date),
           exit = list(CAL = ex_date),
           data = sire[sire$dg_date < sire$ex_date, ],
           exit.status = factor(status, levels = 0:2,
                                labels = c("alive", "canD", "othD")),
           merge = TRUE)
## phony group variable
set.seed(1L)
x$group <- rbinom(nrow(x), 1, 0.5)

st <- survtab(Surv(time = FUT, event = lex.Xst) ~ group, data = x,
              surv.type = "surv.obs",
              breaks = list(FUT = seq(0, 5, 1/12)*365.25))

## NOTE: population hazard should be reported at the same scale
## as time variables in your Lexis data.
data(popmort, package = "popEpi")
pm <- data.frame(popmort)
names(pm) <- c("sex", "CAL", "AGE", "haz")
## from year to day level
pm$haz <- pm$haz/365.25
pm$CAL <- as.Date(paste0(pm$CAL, "-01-01"))
pm$AGE <- pm$AGE*365.25

st <- survtab(Surv(time = FUT, event = lex.Xst) ~ group, data = x,
              surv.type = "surv.rel", relsurv.method = "e2",
              pophaz = pm,
              breaks = list(FUT = seq(0, 5, 1/12)*365.25))
}
}
\references{
Perme, Maja Pohar, Janez Stare, and Jacques Esteve.
"On estimation in relative survival." Biometrics 68.1 (2012): 113-120.
\doi{10.1111/j.1541-0420.2011.01640.x}

Hakulinen, Timo, Karri Seppa, and Paul C. Lambert.
"Choosing the relative survival method for cancer survival estimation."
European Journal of Cancer 47.14 (2011): 2202-2210.
\doi{10.1016/j.ejca.2011.03.011}

Seppa, Karri, Timo Hakulinen, and Arun Pokhrel.
"Choosing the net survival method for cancer survival estimation."
European Journal of Cancer (2013).
\doi{10.1016/j.ejca.2013.09.019}

CHIANG, Chin Long. Introduction to stochastic processes in biostatistics.
1968. ISBN-14: 978-0471155003

Seppa K., Dyba T. and Hakulinen T.: Cancer Survival,
Reference Module in Biomedical Sciences. Elsevier. 08-Jan-2015.
\doi{10.1016/B978-0-12-801238-3.02745-8}
}
\seealso{
\verb{[splitMulti]}, \verb{[lexpand]},
\verb{[ICSS]}, \verb{[sire]}
\href{../doc/survtab_examples.html}{The survtab_examples vignette}

Other main functions: 
\code{\link{Surv}()},
\code{\link{rate}()},
\code{\link{relpois}()},
\code{\link{relpois_ag}()},
\code{\link{sir}()},
\code{\link{sirspline}()},
\code{\link{survmean}()},
\code{\link{survtab_ag}()}

Other survtab functions: 
\code{\link{Surv}()},
\code{\link{lines.survtab}()},
\code{\link{plot.survtab}()},
\code{\link{print.survtab}()},
\code{\link{summary.survtab}()},
\code{\link{survtab_ag}()}
}
\concept{main functions}
\concept{survtab functions}