1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/survival_aggregated.R
\name{survtab_ag}
\alias{survtab_ag}
\title{Estimate Survival Time Functions}
\usage{
survtab_ag(
formula = NULL,
data,
adjust = NULL,
weights = NULL,
surv.breaks = NULL,
n = "at.risk",
d = "from0to1",
n.cens = "from0to0",
pyrs = "pyrs",
d.exp = "d.exp",
n.pp = NULL,
d.pp = "d.pp",
d.pp.2 = "d.pp.2",
n.cens.pp = "n.cens.pp",
pyrs.pp = "pyrs.pp",
d.exp.pp = "d.exp.pp",
surv.type = "surv.rel",
surv.method = "hazard",
relsurv.method = "e2",
subset = NULL,
conf.level = 0.95,
conf.type = "log-log",
verbose = FALSE
)
}
\arguments{
\item{formula}{a \code{formula}; the response
must be the time scale to compute survival time function estimates
over, e.g. \code{fot ~ sex}. Variables on the right-hand side of the formula
separated by \code{+} are considered stratifying variables, for which
estimates are computed separately. May contain usage of \code{adjust()}
--- see Details and Examples.}
\item{data}{since popEpi 0.4.0, a \code{data.frame}
containing variables used in \code{formula} and other arguments.
\code{aggre} objects are recommended as they contain information on any
time scales and are therefore safer; for creating \code{aggre} objects see
\verb{[as.aggre]} when your data is already aggregated and \code{aggre}
for aggregating split \code{Lexis} objects.}
\item{adjust}{can be used as an alternative to passing variables to
argument \code{formula} within a call to \code{adjust()}; e.g.
\code{adjust = "agegr"}. \link[=flexible_argument]{Flexible input}.}
\item{weights}{typically a list of weights or a \code{character} string
specifying an age group standardization scheme; see
the \link[=direct_standardization]{dedicated help page}
and examples. NOTE: \code{weights = "internal"} is based on the counts
of persons in follow-up at the start of follow-up (typically T = 0)}
\item{surv.breaks}{a vector of breaks on the
survival time scale. Optional if \code{data} is an \code{aggre} object
and mandatory otherwise. Must define each intended interval;
e.g. \code{surv.breaks = 0:5} when data has intervals defined by
breaks \code{seq(0, 5, 1/12)} will aggregate to wider intervals first.
It is generally recommended (and sufficient;
see Seppa, Dyban and Hakulinen (2015)) to use monthly
intervals where applicable.}
\item{n}{variable containing counts of subjects at-risk at the start of a
time interval; e.g. \code{n = "at.risk"}.
Required when \code{surv.method = "lifetable"}.
\link[=flexible_argument]{Flexible input}.}
\item{d}{variable(s) containing counts of subjects experiencing an event.
With only one type of event, e.g. \code{d = "deaths"}. With multiple types of
events (for CIF or cause-specific survival estimation), supply e.g.
\code{d = c("canD", "othD")}. If the survival time function to be estimated
does not use multiple types of events, supplying more than one variable
to \code{d} simply causes the variables to be added together.
Always required. \link[=flexible_argument]{Flexible input}.}
\item{n.cens}{variable containing counts of subjects censored during a
survival time interval; E.g. \code{n.cens = "alive"}.
Required when \code{surv.method = "lifetable"}.
\link[=flexible_argument]{Flexible input}.}
\item{pyrs}{variable containing total subject-time accumulated within a
survival time interval; E.g. \code{pyrs = "pyrs"}.
Required when \code{surv.method = "hazard"}. Flexible input.}
\item{d.exp}{variable denoting total "expected numbers of events"
(typically computed \code{pyrs * pop.haz}, where
\code{pop.haz} is the expected hazard level)
accumulated within a survival time interval; E.g. \code{pyrs = "pyrs"}.
Required when computing EdererII relative survivals or
CIFs based on excess counts of events. Flexible input.}
\item{n.pp}{variable containing total Pohar-Perme weighted counts of
subjects at risk in an interval,
supplied as argument \code{n} is supplied.
Computed originally on the subject
level as analogous to \code{pp * as.integer(status == "at-risk")}.
Required when \code{relsurv.method = "pp"}. Flexible input.}
\item{d.pp}{variable(s) containing Pohar-Perme weighted counts of events,
supplied as argument \code{d} is supplied. Computed originally on the subject
level as analogous to \code{pp * as.integer(status == some_event)}.
Required when \code{relsurv.method = "pp"}. Flexible input.}
\item{d.pp.2}{variable(s) containing total Pohar-Perme
"double-weighted" counts of events,
supplied as argument \code{d} is supplied. Computed originally on the subject
level as analogous to \code{pp * pp * as.integer(status == some_event)}.
Required when \code{relsurv.method = "pp"}. Flexible input.}
\item{n.cens.pp}{variable containing total Pohar-Perme weighted counts
censorings,
supplied as argument \code{n.cens} is supplied.
Computed originally on the subject
level as analogous to \code{pp * as.integer(status == "censored")}.
Required when \code{relsurv.method = "pp"}. Flexible input.}
\item{pyrs.pp}{variable containing total Pohar-Perme weighted subject-times,
supplied as argument \code{pyrs} is supplied.
Computed originally on the subject
level as analogous to \code{pp * pyrs}.
Required when \code{relsurv.method = "pp"}. Flexible input.}
\item{d.exp.pp}{variable containing total Pohar-Perme weighted counts
of excess events,
supplied as argument \code{pyrs} is supplied.
Computed originally on the subject
level as analogous to \code{pp * d.exp}.
Required when \code{relsurv.method = "pp"}. Flexible input.}
\item{surv.type}{one of \code{'surv.obs'},
\code{'surv.cause'}, \code{'surv.rel'},
\code{'cif.obs'} or \code{'cif.rel'};
defines what kind of survival time function(s) is/are estimated; see Details}
\item{surv.method}{either \code{'lifetable'} or \code{'hazard'}; determines
the method of calculating survival time functions, where the former computes
ratios such as \code{p = d/(n - n.cens)}
and the latter utilizes subject-times
(typically person-years) for hazard estimates such as \code{d/pyrs}
which are used to compute survival time function estimates.
The former method requires argument \code{n.cens} and the latter
argument \code{pyrs} to be supplied.}
\item{relsurv.method}{either \code{'e2'} or \code{'pp'};
defines whether to compute relative survival using the
EdererII method or using Pohar-Perme weighting;
ignored if \code{surv.type != "surv.rel"}}
\item{subset}{a logical condition; e.g. \code{subset = sex == 1};
subsets the data before computations}
\item{conf.level}{confidence level used in confidence intervals;
e.g. \code{0.95} for 95 percent confidence intervals}
\item{conf.type}{character string; must be one of \code{"plain"},
\code{"log-log"} and \code{"log"};
defines the transformation used on the survival time
function to yield confidence
intervals via the delta method}
\item{verbose}{logical; if \code{TRUE}, the function is chatty and
returns some messages and timings along the process}
}
\value{
Returns a table of life time function values and other
information with survival intervals as rows.
Returns some of the following estimates of survival time functions:
\itemize{
\item \code{surv.obs} - observed (raw, overall) survival
\item \code{surv.obs.K} - observed cause-specific survival for cause K
\item \code{CIF_k} - cumulative incidence function for cause \code{k}
\item \code{CIF.rel} - cumulative incidence function using excess cases
\item \code{r.e2} - relative survival, EdererII
\item \code{r.pp} - relative survival, Pohar-Perme weighted
}
The suffix \code{.as} implies adjusted estimates, and \code{.lo} and
\code{.hi} imply lower and upper confidence limits, respectively.
The prefix \code{SE.} stands for standard error.
}
\description{
This function estimates survival time functions: survival,
relative/net survival, and crude/absolute risk functions (CIF).
}
\section{Basics}{
This function computes interval-based estimates of survival time functions,
where the intervals are set by the user. For product-limit-based
estimation see packages \pkg{survival} and \pkg{relsurv}.
if \code{surv.type = 'surv.obs'}, only 'raw' observed survival
is estimated over the chosen time intervals. With
\code{surv.type = 'surv.rel'}, also relative survival estimates
are supplied in addition to observed survival figures.
\code{surv.type = 'cif.obs'} requests cumulative incidence functions (CIF)
to be estimated.
CIFs are estimated for each competing risk based
on a survival-interval-specific proportional hazards
assumption as described by Chiang (1968).
With \code{surv.type = 'cif.rel'}, a CIF is estimated with using
excess cases as the ''cause-specific'' cases. Finally, with
\code{surv.type = 'surv.cause'}, cause-specific survivals are
estimated separately for each separate type of event.
In hazard-based estimation (\code{surv.method = "hazard"}) survival
time functions are transformations of the estimated corresponding hazard
in the intervals. The hazard itself is estimated using counts of events
(or excess events) and total subject-time in the interval. Life table
\code{surv.method = "lifetable"} estimates are constructed as transformations
of probabilities computed using counts of events and counts of subjects
at risk.
The vignette \href{../doc/survtab_examples.html}{survtab_examples}
has some practical examples.
}
\section{Relative survival}{
When \code{surv.type = 'surv.rel'}, the user can choose
\code{relsurv.method = 'pp'}, whereupon Pohar-Perme weighting is used.
By default \code{relsurv.method = 'e2'}, i.e. the Ederer II method
is used to estimate relative survival.
}
\section{Adjusted estimates}{
Adjusted estimates in this context mean computing estimates separately
by the levels of adjusting variables and returning weighted averages
of the estimates. For example, computing estimates separately by
age groups and returning a weighted average estimate (age-adjusted estimate).
Adjusting requires specification of both the adjusting variables and
the weights for all the levels of the adjusting variables. The former can be
accomplished by using \code{adjust()} with the argument \code{formula},
or by supplying variables directly to argument \code{adjust}. E.g. the
following are all equivalent:
\code{formula = fot ~ sex + adjust(agegr) + adjust(area)}
\code{formula = fot ~ sex + adjust(agegr, area)}
\verb{formula = fot ~ sex, adjust = c("agegr", "area")}
\verb{formula = fot ~ sex, adjust = list(agegr, area)}
The adjusting variables must match with the variable names in the
argument \code{weights};
see the \link[=direct_standardization]{dedicated help page}.
Typically weights are supplied as a \code{list} or
a \code{data.frame}. The former can be done by e.g.
\code{weights = list(agegr = VEC1, area = VEC2)},
where \code{VEC1} and \code{VEC2} are vectors of weights (which do not
have to add up to one). See
\href{../doc/survtab_examples.html}{survtab_examples}
for an example of using a \code{data.frame} to pass weights.
}
\section{Period analysis and other data selection schemes}{
To calculate e.g. period analysis (delayed entry) estimates,
limit the data when/before supplying to this function.See
\href{../doc/survtab_examples.html}{survtab_examples}.
}
\section{Data requirements}{
\code{survtab_ag} computes estimates of survival time functions using
pre-aggregated data. For using subject-level data directly, use
\verb{[survtab]}. For aggregating data, see \verb{[lexpand]}
and \verb{[aggre]}.
By default, and if data is an \code{aggre} object (not mandatory),
\code{survtab_ag} makes use of the exact same breaks that were used in
splitting the original data (with e.g. \code{lexpand}), so it is not
necessary to specify any \code{surv.breaks}. If specified, the
\code{surv.breaks} must be a subset of the pertinent
pre-existing breaks. When data is not an \code{aggre} object, breaks
must always be specified. Interval lengths (\code{delta} in output) are
also calculated based on whichever breaks are used,
so the upper limit of the breaks should
therefore be meaningful and never e.g. \code{Inf}.
}
\examples{
## see more examples with explanations in vignette("survtab_examples")
#### survtab_ag usage
data("sire", package = "popEpi")
## prepare data for e.g. 5-year "period analysis" for 2008-2012
## note: sire is a simulated cohort integrated into popEpi.
BL <- list(fot=seq(0, 5, by = 1/12),
per = c("2008-01-01", "2013-01-01"))
x <- lexpand(sire, birth = bi_date, entry = dg_date, exit = ex_date,
status = status \%in\% 1:2,
breaks = BL,
pophaz = popmort,
aggre = list(fot))
## calculate relative EdererII period method
## NOTE: x is an aggre object here, so surv.breaks are deduced
## automatically
st <- survtab_ag(fot ~ 1, data = x)
summary(st, t = 1:5) ## annual estimates
summary(st, q = list(r.e2 = 0.75)) ## 1st interval where r.e2 < 0.75 at end
\donttest{
plot(st)
## non-aggre data: first call to survtab_ag would fail
df <- data.frame(x)
# st <- survtab_ag(fot ~ 1, data = x)
st <- survtab_ag(fot ~ 1, data = x, surv.breaks = BL$fot)
## calculate age-standardised 5-year relative survival ratio using
## Ederer II method and period approach
sire$agegr <- cut(sire$dg_age,c(0,45,55,65,75,Inf),right=FALSE)
BL <- list(fot=seq(0, 5, by = 1/12),
per = c("2008-01-01", "2013-01-01"))
x <- lexpand(sire, birth = bi_date, entry = dg_date, exit = ex_date,
status = status \%in\% 1:2,
breaks = BL,
pophaz = popmort,
aggre = list(agegr, fot))
## age standardisation using internal weights (age distribution of
## patients diagnosed within the period window)
## (NOTE: what is done here is equivalent to using weights = "internal")
w <- aggregate(at.risk ~ agegr, data = x[x$fot == 0], FUN = sum)
names(w) <- c("agegr", "weights")
st <- survtab_ag(fot ~ adjust(agegr), data = x, weights = w)
plot(st, y = "r.e2.as", col = c("blue"))
## age standardisation using ICSS1 weights
data(ICSS)
cut <- c(0, 45, 55, 65, 75, Inf)
agegr <- cut(ICSS$age, cut, right = FALSE)
w <- aggregate(ICSS1~agegr, data = ICSS, FUN = sum)
names(w) <- c("agegr", "weights")
st <- survtab_ag(fot ~ adjust(agegr), data = x, weights = w)
lines(st, y = "r.e2.as", col = c("red"))
## cause-specific survival
sire$stat <- factor(sire$status, 0:2, c("alive", "canD", "othD"))
x <- lexpand(sire, birth = bi_date, entry = dg_date, exit = ex_date,
status = stat,
breaks = BL,
pophaz = popmort,
aggre = list(agegr, fot))
st <- survtab_ag(fot ~ adjust(agegr), data = x, weights = w,
d = c("fromalivetocanD", "fromalivetoothD"),
surv.type = "surv.cause")
plot(st, y = "surv.obs.fromalivetocanD.as")
lines(st, y = "surv.obs.fromalivetoothD.as", col = "red")
}
}
\references{
Perme, Maja Pohar, Janez Stare, and Jacques Esteve.
"On estimation in relative survival." Biometrics 68.1 (2012): 113-120.
\doi{10.1111/j.1541-0420.2011.01640.x}
Hakulinen, Timo, Karri Seppa, and Paul C. Lambert.
"Choosing the relative survival method for cancer survival estimation."
European Journal of Cancer 47.14 (2011): 2202-2210.
\doi{10.1016/j.ejca.2011.03.011}
Seppa, Karri, Timo Hakulinen, and Arun Pokhrel.
"Choosing the net survival method for cancer survival estimation."
European Journal of Cancer (2013).
\doi{10.1016/j.ejca.2013.09.019}
CHIANG, Chin Long. Introduction to stochastic processes in biostatistics.
1968. ISBN-14: 978-0471155003
Seppa K., Dyba T. and Hakulinen T.: Cancer Survival,
Reference Module in Biomedical Sciences. Elsevier. 08-Jan-2015.
\doi{10.1016/B978-0-12-801238-3.02745-8}
}
\seealso{
\verb{[splitMulti]}, \verb{[lexpand]},
\verb{[ICSS]}, \verb{[sire]}
\href{../doc/survtab_examples.html}{The survtab_examples vignette}
Other main functions:
\code{\link{Surv}()},
\code{\link{rate}()},
\code{\link{relpois}()},
\code{\link{relpois_ag}()},
\code{\link{sir}()},
\code{\link{sirspline}()},
\code{\link{survmean}()},
\code{\link{survtab}()}
Other survtab functions:
\code{\link{Surv}()},
\code{\link{lines.survtab}()},
\code{\link{plot.survtab}()},
\code{\link{print.survtab}()},
\code{\link{summary.survtab}()},
\code{\link{survtab}()}
}
\concept{main functions}
\concept{survtab functions}
|