1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
\name{hprabclust}
\alias{hprabclust}
\alias{print.comprabclust}
%- Also NEED an `\alias' for EACH other topic documented here.
\title{Clustering of species ranges from presence-absence matrices
(hierarchical methods)}
\description{
Clusters a presence-absence matrix object by taking the
'h-cut'-partition of a hierarchical clustering and
declaring all members of too small clusters as 'noise' (this gives a
distance-based clustering method, which estimates the number of
clusters and allows for noise/non-clustered points). Note that this
is experimental. Often, the \code{prabclust}-solutions
is more convincing due to higher flexibility of that method. However,
\code{hprabclust} may be more stable sometimes.
\bold{Note:} Data formats are described
on the \code{prabinit} help page. You may also consider the example datasets
\code{kykladspecreg.dat} and \code{nb.dat}. Take care of the
parameter \code{rows.are.species} of \code{prabinit}.
}
\usage{
hprabclust(prabobj, cutdist=0.4, cutout=1,
method="average", nnout=2, mdsplot=TRUE, mdsmethod="classical")
\method{print}{comprabclust}(x, ...)
}
%- maybe also `usage' for other objects documented here.
\arguments{
\item{prabobj}{object of class \code{prab} as
generated by \code{prabinit}. Presence-absence data to be analyzed.}
\item{cutdist}{non-negative integer. Cutoff distance to determine the
partition, see \code{cutree}.}
\item{cutout}{non-negative integer. Points that have at most
\code{nnout} distances smaller or equal than \code{cutout} are
treated as noise.}
\item{method}{string. Clustering method, see \code{hclust}.}
\item{nnout}{non-negative integer. Members of clusters with less or
equal than \code{nnout} points or that have less or equal than
\code{nnout} neighbors closer than \code{cutout} are treated as noise.}
\item{mdsplot}{logical. If \code{TRUE}, the cluster solution is
plotted on the first two MDS dimensions, see \code{mdsmethod}.}
\item{mdsmethod}{\code{"classical"}, \code{"kruskal"}, or
\code{"sammon"}. The MDS method
to transform the distances to data points. \code{"classical"} indicates
metric MDS by function \code{cmdscale}, \code{"kruskal"} is
non-metric MDS. Note that if \code{mdsmethod!="classical"} zero
distances between different objects are replaced by the minimum of
the nonzero distances divided by 10 (otherwise the MDS method would
produce an error). Note that \code{mdsmethod} is ignored if
\code{mdsplot=FALSE}.}
\item{x}{\code{comprabclust}-object as generated by \code{hprabclus}.}
\item{...}{necessary for print method.}
}
\value{
\code{hprabclust} generates an object of class \code{comprabclust}. This is a
list with components
\item{clustering}{vector of integers indicating the cluster memberships of
the species (\code{cutout}-outliers are noise, but small clusters
are allowed). Noise is coded as 0.}
\item{rclustering}{vector of integers indicating the cluster memberships of
the species, noise as described under \code{nnout}.
Noise is coded as 0.}
\item{cutdist}{see above.}
\item{method}{see above.}
\item{cutout}{see above.}
\item{nnout}{see above.}
\item{noisen}{number of points minus \code{cutout}-outliers.}
\item{symbols}{vector of characters corresponding to \code{rclustering}, but
estimated noise by \code{"N"}.}
\item{points}{numerical matrix. MDS configuration (if \code{mdsplot=TRUE}).}
\item{call}{function call.}
}
\author{Christian Hennig
\email{christian.hennig@unibo.it}
\url{https://www.unibo.it/sitoweb/christian.hennig/en}}
\seealso{
\code{\link{hclust}}, \code{\link{cutree}},
\code{\link{prabclust}}.
}
\examples{
data(kykladspecreg)
data(nb)
data(waterdist)
x <- prabinit(prabmatrix=kykladspecreg, neighborhood=nb,
geodist=waterdist, distance="geco")
hprabclust(x,mdsplot=FALSE)
}
\keyword{cluster}% at least one, from doc/KEYWORDS
\keyword{spatial}% __ONLY ONE__ keyword per line
|