1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
\name{prabtest}
\alias{prabtest}
\alias{summary.prabtest}
\alias{print.summary.prabtest}
%- Also NEED an `\alias' for EACH other topic documented here.
\title{Parametric bootstrap test for clustering in presence-absence matrices}
\description{
Parametric bootstrap test of a null model of i.i.d., but spatially
autocorrelated species against clustering of the species' occupied
areas (or alternatively nestedness). In spite of the lots of
parameters, a standard execution (for the default test statistics, see
parameter \code{teststat} below) will be \cr
\code{prabmatrix <- prabinit(file="path/prabmatrixfile",
neighborhood="path/neighborhoodfile")}\cr
\code{test <- prabtest(prabmatrix)}\cr
\code{summary(test)}\cr
\bold{Note:} Data formats are described
on the \code{prabinit} help page. You may also consider the example datasets
\code{kykladspecreg.dat} and \code{nb.dat}. Take care of the
parameter \code{rows.are.species} of \code{prabinit}.}
\usage{
prabtest(prabobject, teststat = "distratio", tuning = switch(teststat,
distratio = 0.25, lcomponent = floor(3 * ncol(prabobject$distmat)/4),
isovertice = ncol(prabobject$distmat), nn = 4, NA), times = 1000,
pd = NULL, prange = c(0, 1), nperp = 4, step = 0.1, step2=0.01,
twostep = TRUE,
sf.sim = FALSE, sf.const = sf.sim, pdfnb = FALSE, ignore.richness=FALSE)
\method{summary}{prabtest}(object, above.p=object$teststat \%in\%
c("groups","inclusions","mean"),
group.outmean=FALSE,...)
\method{print}{summary.prabtest}(x, ...)
}
%- maybe also `usage' for other objects documented here.
\arguments{
\item{prabobject}{an object of class \code{prab} (presence-absence data), as
generated by \code{prabinit}.}
\item{teststat}{string, indicating the test statistics. \code{"isovertice"}:
number of isolated vertices in the graph of \code{tuning}
smallest distances
between species. \code{"lcomponent"}: size of largest connectivity
component in this graph. \code{"distratio"}: ratio between \code{tuning}
smallest and largest distances. \code{"nn"}: average distance of species to
\code{tuning}th nearest neighbor.
\code{"inclusions"}: number of inclusions between areas of different
species (tests for nestedness structure, not for clustering).}
\item{tuning}{integer or (if \code{teststat="distratio"}) numerical
between 0 and 1. Tuning constant for test statistics, see
\code{teststat}.}
\item{times}{integer. Number of simulation runs.}
\item{pd}{numerical between 0 and 1. The probability that a new
region is drawn from the non-neighborhood of the previous regions
belonging to a species under generation. If \code{NA} (the default),
\code{prabtest} estimates this by function
\code{autoconst}. Otherwise the next five parameters have no effect.}
\item{prange}{numerical range vector, lower value not smaller than 0, larger
value not larger than 1. Range where \code{pd} is to be found. Used
by function \code{autoconst}.}
\item{nperp}{integer. Number of simulations per \code{pd}-value. Used
by function \code{autoconst}.}
\item{step}{numerical between 0 and 1. Interval length between
subsequent choices of \code{pd} for the first simulation. Used
by function \code{autoconst}.}
\item{step2}{numerical between 0 and 1. Interval length between
subsequent choices of \code{pd} for the second simulation (see
parameter \code{twostep}). Used
by function \code{autoconst}.}
\item{twostep}{logical. If \code{TRUE}, a first estimation step for
\code{pd} is
carried out in the whole \code{prange}, and then the final
estimation is determined between the preliminary estimator
\code{-5*step2} and \code{+5*step2}. Else, the first simulation
determines the final estimator. Used
by function \code{autoconst}.}
\item{sf.sim}{logical. Indicates if the range sizes of the species
are held fixed
in the test simulation (\code{TRUE}) or generated from their empirical
distribution in \code{x} (\code{FALSE}). See function \code{randpop.nb}.}
\item{sf.const}{logical. Same as \code{sf.sim}, but for estimation of
\code{pd} by \code{autoconst}.}
\item{pdfnb}{logical. If \code{TRUE}, the probabilities of the regions
are modified according to the number of neighboring regions in
\code{randpop.nb}, see Hennig and Hausdorf (2002), p. 5. This is
usually no improvement.}
\item{ignore.richness}{logical. If \code{TRUE}, there is no assumption
of species richnesses to differ between regions in the null model.
Regionwise probabilities don't differ in the generation of null
data.}
\item{object}{object of class \code{prabtest}.}
\item{above.p}{logical. \code{TRUE} means that for output from
\code{abundtest} the p-value is
\code{p.above}, otherwise \code{p.below}.}
\item{group.outmean}{logical. If \code{TRUE} and
\code{object$teststat="groups"}, statistics concerning the mean of
all dissimilarities are given out by \code{print.summary.prabtest}.}
\item{x}{object of class \code{summary.prabtest}.}
\item{\dots}{no meaning, necessary for print and summary methods.}
}
\details{
From the original data, the distribution of the
range sizes of the species, the autocorrelation parameter \code{pd}
(estimated by \code{autoconst}) and the distribution on the regions
induced by the relative species numbers are taken. With these
parameters, \code{times} populations according to the null model
implemented in \code{randpop.nb} are generated and the test statistic
is evaluated. The resulting p-value is number of simulated statistic
values more extreme than than the value of the original data\code{+1}
divided by \code{times+1}. "More extreme" means smaller for
\code{"lcomponent"}, \code{"distratio"}, \code{"nn"}, larger for
\code{"inclusions"}, and
twice the smaller number between the original statistic value and the
"border", i.e., a two-sided test for \code{"isovertice"}.
If \code{pd=NA} was
specified, a diagnostic plot
for the estimation of \code{pd} is plotted by \code{autoconst}.
For details see Hennig
and Hausdorf (2004) and the help pages of the cited functions.
}
\value{
\code{prabtest} prodices
an object of class \code{prabtest}, which is a list with components
\item{results}{vector of test statistic values for all simulated
populations.}
\item{datac}{test statistic value for the original data.'}
\item{p.value}{the p-value.}
\item{tuning}{see above.}
\item{pd}{see above.}
\item{reg}{regression coefficients from \code{autoconst}.}
\item{teststat}{see above.}
\item{distance}{the distance measure chosen, see \code{prabinit}.}
\item{gtf}{the geco-distance tuning parameter (only informative if
\code{distance="geco"}), see \code{prabinit}.}
\item{times}{see above.}
\item{pdfnb}{see above.}
\item{ignore.richness}{see above.}
\code{summary.prabtest} produces an object of class
\code{summary.prabtest}, which is a list with components
\item{rrange}{range of the simulation results (test statistic values)
of \code{object}.}
\item{rmean}{mean of the simulation results (test statistic values)
of \code{object}.}
\item{datac, p.value, pd, tuning, teststat, distance, times, pdfnb,
abund, sarlambda}{directly
taken from \code{object}, see \code{prabtest} and \code{abundtest}.}
\item{groupinfo}{if \code{object$teststat="groups"}, components
\code{rrangeg} (matrix of group-wise ranges of test statistic
value), \code{rmeang} (vector of group-wise means of test statistic
value), \code{rrangem} (range over simulations of overall mean of
within-group dissimilarities), \code{rmeanm} (mean over simulations
of overall mean of within-group dissimilarities) are added to the
list \code{object$groupinfo}, and this is given out.}
}
\references{
Hennig, C. and Hausdorf, B. (2004) Distance-based parametric bootstrap
tests for clustering of species ranges. \emph{Computational Statistics
and
Data Analysis} 45, 875-896.
\url{http://stat.ethz.ch/Research-Reports/110.html}.
Hausdorf, B. and Hennig, C. (2003) Biotic Element Analysis in
Biogeography. \emph{Systematic Biology} 52, 717-723.
Hausdorf, B. and Hennig, C. (2003) Nestedness of north-west European
land snail ranges as a consequence of differential immigration from
Pleistocene glacial refuges. \emph{Oecologia} 135, 102-109.
}
\author{Christian Hennig
\email{christian.hennig@unibo.it}
\url{https://www.unibo.it/sitoweb/christian.hennig/en}}
\seealso{
\code{\link{prabinit}} generates objects of class \code{prab}.
\code{\link{autoconst}} estimates \code{pd} from such objects.
\code{\link{randpop.nb}} generates populations from the null model.
An alternative model is given by \code{\link{cluspop.nb}}.
Some more information on the test statistics is given in
\code{\link{homogen.test}}, \code{\link{lcomponent}},
\code{\link{distratio}}, \code{\link{nn}},
\code{\link{incmatrix}}.
The simulations are computed by \code{\link{pop.sim}}.
}
\examples{
options(digits=4)
data(kykladspecreg)
data(nb)
set.seed(1234)
x <- prabinit(prabmatrix=kykladspecreg, neighborhood=nb)
# If you want to use your own ASCII data files, use
# x <- prabinit(file="path/prabmatrixfile",
# neighborhood="path/neighborhoodfile")
kpt <- prabtest(x, times=5, pd=0.35)
# These settings are chosen to make the example execution
# a bit faster; usually you will use prabtest(kprab).
summary(kpt)
}
\keyword{cluster}% at least one, from doc/KEYWORDS
\keyword{spatial}% __ONLY ONE__ keyword per line
|