1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
\encoding{UTF-8}
\name{ci.auc}
\alias{ci.auc}
\alias{ci.auc.auc}
\alias{ci.auc.default}
\alias{ci.auc.formula}
\alias{ci.auc.roc}
\alias{ci.auc.smooth.roc}
\alias{ci.auc.multiclass.roc}
\alias{ci.auc.multiclass.auc}
\title{
Compute the confidence interval of the AUC
}
\description{
This function computes the confidence interval (CI) of an area under
the curve (AUC). By default, the 95\% CI is computed with 2000
stratified bootstrap replicates.
}
\usage{
# ci.auc(...)
\S3method{ci.auc}{roc}(roc, conf.level=0.95, method=c("delong",
"bootstrap"), boot.n = 2000, boot.stratified = TRUE, reuse.auc=TRUE,
progress = getOption("pROCProgress")$name, parallel=FALSE, ...)
\S3method{ci.auc}{smooth.roc}(smooth.roc, conf.level=0.95, boot.n=2000,
boot.stratified=TRUE, reuse.auc=TRUE,
progress=getOption("pROCProgress")$name, parallel=FALSE, ...)
\S3method{ci.auc}{auc}(auc, ...)
\S3method{ci.auc}{multiclass.roc}(multiclass.roc, ...)
\S3method{ci.auc}{multiclass.auc}(multiclass.auc, ...)
\S3method{ci.auc}{auc}(auc, ...)
\S3method{ci.auc}{formula}(formula, data, ...)
\S3method{ci.auc}{default}(response, predictor, ...)
}
\arguments{
\item{roc, smooth.roc}{a \dQuote{roc} object from the
\code{\link{roc}} function, or a \dQuote{smooth.roc} object from the
\code{\link[=smooth.roc]{smooth}} function.
}
\item{auc}{an \dQuote{auc} object from the \code{\link{auc}} function.}
\item{multiclass.roc, multiclass.auc}{not implemented.}
\item{response, predictor}{arguments for the \code{\link{roc}} function.}
\item{formula, data}{a formula (and possibly a data object) of type
response~predictor for the \code{\link{roc}} function.
}
\item{conf.level}{the width of the confidence interval as [0,1], never
in percent. Default: 0.95, resulting in a 95\% CI.
}
\item{method}{the method to use, either \dQuote{delong} or
\dQuote{bootstrap}. The first letter is sufficient. If omitted, the
appropriate method is selected as explained in details.
}
\item{boot.n}{the number of bootstrap replicates. Default: 2000.}
\item{boot.stratified}{should the bootstrap be stratified (default, same number
of cases/controls in each replicate than in the original sample) or
not.
}
\item{reuse.auc}{if \code{TRUE} (default) and the \dQuote{roc} object
contains an \dQuote{auc} field, re-use these specifications for the
test. If false, use optional \code{\dots} arguments to
\code{\link{auc}}. See details.
}
\item{progress}{the name of progress bar to display. Typically
\dQuote{none}, \dQuote{win}, \dQuote{tk} or \dQuote{text} (see the
\code{name} argument to \code{\link[plyr]{create_progress_bar}} for
more information), but a list as returned by \code{\link[plyr]{create_progress_bar}}
is also accepted. See also the \dQuote{Progress bars} section of
\link[=pROC-package]{this package's documentation}.
}
\item{parallel}{if TRUE, the bootstrap is processed in parallel, using
parallel backend provided by plyr (foreach).
}
\item{\dots}{further arguments passed to or from other methods,
especially arguments for \code{\link{roc}} and \code{roc.test.roc}
when calling \code{roc.test.default} or \code{roc.test.formula}.
Arguments for \code{\link{auc}}
and \code{\link{txtProgressBar}} (only \code{char} and \code{style})
if applicable.
}
}
\details{
This function computes the CI of an AUC. Two methods are available:
\dQuote{delong} and \dQuote{bootstrap} with the parameters defined in \dQuote{roc$auc} to
compute a CI. When it is called with two vectors (response, predictor)
or a formula (response~predictor) arguments, the \code{\link{roc}}
function is called to build the ROC curve first.
The default is to use
\dQuote{delong} method except for comparison of partial AUC and smoothed
curves, where \code{bootstrap} is used. Using \dQuote{delong} for
partial AUC and smoothed ROCs is not supported.
With \code{method="bootstrap"}, the function calls \code{\link{auc}}
\code{boot.n} times. For more details about the bootstrap, see the Bootstrap section in
\link[=pROC-package]{this package's documentation}.
For \link[=smooth.roc]{smoothed ROC curves}, smoothing is performed again at each
bootstrap replicate with the parameters originally provided.
If a density smoothing was performed with user-provided
\code{density.cases} or \code{density.controls} the bootstrap cannot
be performed and an error is issued.
With \code{method="delong"}, the variance of the AUC is computed as
defined by DeLong \emph{et al.} (1988) using the algorithm by Sun and Xu (2014)
and the CI is deduced with \code{\link{qnorm}}.
CI of multiclass ROC curves and AUC is not implemented yet. Attempting to call these
methods returns an error.
}
\section{AUC specification}{
The comparison of the CI needs a specification of the AUC. This allows
to compute the CI for full or partial AUCs. The specification is defined by:
\enumerate{
\item the \dQuote{auc} field in the \dQuote{\link{roc}} object if
\code{reuse.auc} is set to \code{TRUE} (default). It is naturally
inherited from any call to \code{\link{roc}} and fits most cases.
\item passing the specification to \code{\link{auc}} with \dots
(arguments \code{partial.auc}, \code{partial.auc.correct} and
\code{partial.auc.focus}). In this case, you must ensure either that
the \code{\link{roc}} object do not contain an \code{auc} field (if
you called \code{\link{roc}} with \code{auc=FALSE}), or set
\code{reuse.auc=FALSE}.
}
If \code{reuse.auc=FALSE} the \code{\link{auc}} function will always
be called with \code{\dots} to determine the specification, even if
the \dQuote{\link{roc}} object do contain an \code{auc} field.
As well if the \dQuote{\link{roc}} object do not contain an \code{auc}
field, the \code{\link{auc}} function will always be called with
\code{\dots} to determine the specification.
Warning: if the roc object passed to ci contains an \code{auc}
field and \code{reuse.auc=TRUE}, \link{auc} is not called and
arguments such as \code{partial.auc} are silently ignored.
}
\section{Warnings}{
If \code{method="delong"} and the AUC specification specifies a
partial AUC, the warning \dQuote{Using DeLong's test for partial AUC is
not supported. Using bootstrap test instead.} is issued. The
\code{method} argument is ignored and \dQuote{bootstrap} is used
instead.
If \code{boot.stratified=FALSE} and the sample has a large imbalance between
cases and controls, it could happen that one or more of the replicates
contains no case or control observation, or that there are not enough
points for smoothing, producing a \code{NA} area.
The warning \dQuote{NA value(s) produced during bootstrap were ignored.}
will be issued and the observation will be ignored. If you have a large
imbalance in your sample, it could be safer to keep
\code{boot.stratified=TRUE}.
}
\section{Errors}{
If \code{density.cases} and \code{density.controls} were provided
for smoothing, the error \dQuote{Cannot compute the statistic on ROC
curves smoothed with density.controls and density.cases.} is issued.
}
\value{
A numeric vector of length 3 and class \dQuote{ci.auc}, \dQuote{ci} and \dQuote{numeric} (in this order), with the lower
bound, the median and the upper bound of the CI, and the following attributes:
\item{conf.level}{the width of the CI, in fraction.}
\item{method}{the method employed.}
\item{boot.n}{the number of bootstrap replicates.}
\item{boot.stratified}{whether or not the bootstrapping was stratified.}
\item{auc}{an object of class \dQuote{\link{auc}} stored for reference about the
compued AUC details (partial, percent, ...)}
The \code{aucs} item is not included in this list since version 1.2 for
consistency reasons.
}
\references{
James Carpenter and John Bithell (2000) ``Bootstrap condence intervals:
when, which, what? A practical guide for medical statisticians''.
\emph{Statistics in Medicine} \bold{19}, 1141--1164.
DOI: \doi{10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F}.
Elisabeth R. DeLong, David M. DeLong and Daniel L. Clarke-Pearson
(1988) ``Comparing the areas under two or more correlated receiver
operating characteristic curves: a nonparametric
approach''. \emph{Biometrics} \bold{44}, 837--845.
Xu Sun and Weichao Xu (2014) ``Fast Implementation of DeLongs Algorithm for Comparing
the Areas Under Correlated Receiver Operating Characteristic Curves''. \emph{IEEE Signal
Processing Letters}, \bold{21}, 1389--1393.
DOI: \doi{10.1109/LSP.2014.2337313}.
Xavier Robin, Natacha Turck, Alexandre Hainard, \emph{et al.}
(2011) ``pROC: an open-source package for R and S+ to analyze and
compare ROC curves''. \emph{BMC Bioinformatics}, \bold{7}, 77.
DOI: \doi{10.1186/1471-2105-12-77}.
Hadley Wickham (2011) ``The Split-Apply-Combine Strategy for Data Analysis''. \emph{Journal of Statistical Software}, \bold{40}, 1--29.
URL: \doi{10.18637/jss.v040.i01}.
}
\seealso{
\code{\link{roc}}, \code{\link{auc}}, \code{\link{ci}}
}
\examples{
# Create a ROC curve:
data(aSAH)
roc1 <- roc(aSAH$outcome, aSAH$s100b)
## Basic example ##
ci.auc(roc1)
# You can also write:
ci(roc1)
ci(auc(roc1))
## More options ##
# Partial AUC and customized bootstrap:
\dontrun{
ci.auc(roc1,
conf.level=0.9,
partial.auc=c(1, .8), partial.auc.focus="se", partial.auc.correct=TRUE,
boot.n=10000, stratified=FALSE)}\dontshow{
ci.auc(roc1,
conf.level=0.9,
partial.auc=c(1, .8), partial.auc.focus="se", partial.auc.correct=TRUE,
boot.n=10, stratified=FALSE)}
# Note that the following will NOT give a CI of the partial AUC:
\dontrun{
ci.auc(roc1,
partial.auc=c(1, .8), partial.auc.focus="se", partial.auc.correct=FALSE)}
# This is because rocobj$auc is not a partial AUC and reuse.auc = TRUE by default.
# You can overcome this problem by passing an AUC instead:
auc1 <- auc(roc1, partial.auc=c(1, .8), partial.auc.focus="se",
partial.auc.correct=FALSE)
\dontrun{
ci.auc(auc1)}\dontshow{ci.auc(auc1, boot.n = 10)}
## On smoothed ROC curves with bootstrap ##
\dontrun{
ci.auc(smooth(roc1, method="density"))}\dontshow{
ci.auc(smooth(roc1, method="density"), boot.n = 10)}
}
\keyword{univar}
\keyword{nonparametric}
\keyword{utilities}
\keyword{roc}
|