File: ci.coords.Rd

package info (click to toggle)
r-cran-proc 1.18.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,260 kB
  • sloc: cpp: 144; sh: 14; makefile: 2
file content (203 lines) | stat: -rw-r--r-- 8,633 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
\encoding{UTF-8}
\name{ci.coords}
\alias{ci.coords}
\alias{ci.coords.default}
\alias{ci.coords.formula}
\alias{ci.coords.roc}
\alias{ci.coords.smooth.roc}

\title{
  Compute the confidence interval of arbitrary coordinates
}

\description{
  This function computes the confidence interval (CI) of the coordinates
  of a ROC curves with the \code{\link{coords}} function.
  By default, the 95\% CI are computed with 2000 stratified bootstrap replicates.
}

\usage{
# ci.coords(...)
\S3method{ci.coords}{roc}(roc, x,
input=c("threshold", "specificity", "sensitivity"),
ret=c("threshold", "specificity", "sensitivity"),
best.method=c("youden", "closest.topleft"), best.weights=c(1, 0.5),
best.policy = c("stop", "omit", "random"),
conf.level=0.95, boot.n=2000,
boot.stratified=TRUE,
progress=getOption("pROCProgress")$name, ...) 
\S3method{ci.coords}{formula}(formula, data, ...)
\S3method{ci.coords}{smooth.roc}(smooth.roc, x,
input=c("specificity", "sensitivity"), ret=c("specificity", "sensitivity"),
best.method=c("youden", "closest.topleft"), best.weights=c(1, 0.5),
best.policy = c("stop", "omit", "random"),
conf.level=0.95, boot.n=2000,
boot.stratified=TRUE,
progress=getOption("pROCProgress")$name, ...)
\S3method{ci.coords}{default}(response, predictor, ...)
}
		   
\arguments{
  \item{roc, smooth.roc}{a \dQuote{roc} object from the
	\code{\link{roc}} function, or a \dQuote{smooth.roc} object from the
	\code{\link[=smooth.roc]{smooth}} function.
  }
  \item{response, predictor}{arguments for the \code{\link{roc}} function.}
  \item{formula, data}{a formula (and possibly a data object) of type
	response~predictor for the \code{\link{roc}} function.
  }
  \item{x, input, ret, best.method, best.weights}{Arguments passed to \code{\link{coords}}.
    See there for more details. The only difference is on the \code{x} argument which cannot be
    \dQuote{all} or \dQuote{local maximas}.
  }
  \item{best.policy}{The policy follow when multiple \dQuote{best} thresholds are returned by \code{\link{coords}}.
  	\dQuote{stop} will abort the processing with \code{\link{stop}} (default),
  	\dQuote{omit} will ignore the sample (as in \code{\link{NA}}) 
  	and \dQuote{random} will select one of the threshold randomly.
  }
  \item{conf.level}{the width of the confidence interval as [0,1], never
    in percent. Default: 0.95, resulting in a 95\% CI.
  }
  \item{boot.n}{the number of bootstrap replicates. Default: 2000.}
  \item{boot.stratified}{should the bootstrap be stratified (default, same number
	of cases/controls in each replicate than in the original sample) or
	not.
  }
  \item{progress}{the name of progress bar to display. Typically
    \dQuote{none}, \dQuote{win}, \dQuote{tk} or \dQuote{text} (see the
    \code{name} argument to \code{\link[plyr]{create_progress_bar}} for
    more information), but a list as returned by \code{\link[plyr]{create_progress_bar}}
    is also accepted. See also the \dQuote{Progress bars} section of
    \link[=pROC-package]{this package's documentation}.
  }
  \item{\dots}{further arguments passed to or from other methods,
    especially arguments for \code{\link{roc}} and \code{ci.coords.roc}
    when calling \code{ci.coords.default} or \code{ci.coords.formula}.
    Arguments for \code{\link{txtProgressBar}} (only 
    \code{char} and \code{style}) if applicable.
  }
}

\details{
  \code{ci.coords.formula} and \code{ci.coords.default} are convenience methods
  that build the ROC curve (with the \code{\link{roc}} function) before
  calling \code{ci.coords.roc}. You can pass them arguments for both
  \code{\link{roc}} and \code{ci.coords.roc}. Simply use \code{ci.coords}
  that will dispatch to the correct method.

  This function creates \code{boot.n} bootstrap replicate of the ROC
  curve, and evaluates the coordinates specified by the \code{x}, \code{input},
  \code{ret}, \code{best.method} and \code{best.weights} arguments. Then it computes the
  confidence interval as the percentiles given by \code{conf.level}.
  
  When \code{x="best"}, the best threshold is determined at each bootstrap 
  iteration, effectively assessing the confidence interval of choice of the "best"
  threshold itself.  This differs from the behavior of \code{\link{ci.thresholds}},
  where the "best" threshold is assessed on the given ROC curve before
  resampling.

  For more details about the bootstrap, see the Bootstrap section in
  \link[=pROC-package]{this package's documentation}.
}

\section{Warnings}{
  If \code{boot.stratified=FALSE} and the sample has a large imbalance between
  cases and controls, it could happen that one or more of the replicates
  contains no case or control observation, producing a \code{NA} area.
  The warning \dQuote{NA value(s) produced during bootstrap were ignored.}
  will be issued and the observation will be ignored. If you have a large
  imbalance in your sample, it could be safer to keep
  \code{boot.stratified=TRUE}.
  
  This warning will also be displayed if you chose \code{best.policy = "omit"}
  and a ROC curve with multiple \dQuote{best} threshold was generated
  during at least one of the replicates.
}

\value{
  \bold{Note:} changed in version 1.16.
  
  A list of the same length as \code{ret} and named as \code{ret}, and of 
  class \dQuote{ci.thresholds}, \dQuote{ci} and \dQuote{list} (in this order).
  
  Each element of the list is a matrix of the confidence intervals with
  rows given by \code{x} and with 3 columns, the lower bound of the CI, 
  the median, and the upper bound of the CI.
  
  Additionally, the list has the following attributes: 
  
  \item{conf.level}{the width of the CI, in fraction.}
  \item{boot.n}{the number of bootstrap replicates.}
  \item{boot.stratified}{whether or not the bootstrapping was stratified.}
  \item{input}{the input coordinate, as given in argument.}
  \item{x}{the coordinates used to calculate the CI, as given in argument.}
  \item{ret}{the return values, as given in argument or substituted by
  	\code{link{coords}}.}
  \item{roc}{the object of class \dQuote{\link{roc}} that was used to
	compute the CI.
  }
}

\references{
  James Carpenter and John Bithell (2000) ``Bootstrap condence intervals:
  when, which, what? A practical guide for medical statisticians''.
  \emph{Statistics in Medicine} \bold{19}, 1141--1164.
  DOI: \doi{10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F}.

  Tom Fawcett (2006) ``An introduction to ROC analysis''. \emph{Pattern
    Recognition Letters} \bold{27}, 861--874. DOI:
  \doi{10.1016/j.patrec.2005.10.010}.
  
  Hadley Wickham (2011) ``The Split-Apply-Combine Strategy for Data Analysis''. \emph{Journal of Statistical Software}, \bold{40}, 1--29.
  URL: \doi{10.18637/jss.v040.i01}.
}

\seealso{
  \code{\link{roc}},
  \code{\link{coords}},
  \code{\link{ci}}
  
  CRAN package \pkg{plyr}, employed in this function.
}

\examples{
# Create a ROC curve:
data(aSAH)
roc1 <- roc(aSAH$outcome, aSAH$s100b)


## Basic example ##
\dontrun{
ci.coords(roc1, x="best", input = "threshold", 
          ret=c("specificity", "ppv", "tp"))


## More options ##
ci.coords(roc1, x=0.9, input = "sensitivity", ret="specificity")
ci.coords(roc1, x=0.9, input = "sensitivity", ret=c("specificity", "ppv", "tp"))
ci.coords(roc1, x=c(0.1, 0.5, 0.9), input = "sensitivity", ret="specificity")
ci.coords(roc1, x=c(0.1, 0.5, 0.9), input = "sensitivity", ret=c("specificity", "ppv", "tp"))

# Return everything we can:
rets <- c("threshold", "specificity", "sensitivity", "accuracy", "tn", "tp", "fn", "fp", "npv", 
          "ppv", "1-specificity", "1-sensitivity", "1-accuracy", "1-npv", "1-ppv")
ci.coords(roc1, x="best", input = "threshold", ret=rets)}\dontshow{
ci.coords(roc1, x=0.9, input = "sensitivity", ret="specificity", boot.n=10)
ci.coords(roc1, x=0.9, input = "sensitivity", ret=c("specificity", "ppv", "tp"), boot.n=10)
ci.coords(roc1, x=c(0.1, 0.5, 0.9), input = "sensitivity", ret="specificity", boot.n=10)
ci.coords(roc1, x=c(0.1, 0.5, 0.9), input = "sensitivity", ret=c("specificity", "ppv", "tp"), boot.n=10)
rets <- c("threshold", "specificity", "sensitivity", "accuracy", "tn", "tp", "fn", "fp", "npv", 
          "ppv", "1-specificity", "1-sensitivity", "1-accuracy", "1-npv", "1-ppv")
ci.coords(roc1, x="best", input = "threshold", ret=rets, boot.n=10)}


## On smoothed ROC curves with bootstrap ##
\dontrun{
ci.coords(smooth(roc1), x=0.9, input = "sensitivity", ret=c("specificity", "ppv", "tp"))}\dontshow{
ci.coords(smooth(roc1), x=0.9, input = "sensitivity", ret=c("specificity", "ppv", "tp"), boot.n = 10)}
}

\keyword{univar}
\keyword{nonparametric}
\keyword{utilities}
\keyword{roc}