1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
\encoding{UTF-8}
\name{ci.coords}
\alias{ci.coords}
\alias{ci.coords.default}
\alias{ci.coords.formula}
\alias{ci.coords.roc}
\alias{ci.coords.smooth.roc}
\title{
Compute the confidence interval of arbitrary coordinates
}
\description{
This function computes the confidence interval (CI) of the coordinates
of a ROC curves with the \code{\link{coords}} function.
By default, the 95\% CI are computed with 2000 stratified bootstrap replicates.
}
\usage{
# ci.coords(...)
\S3method{ci.coords}{roc}(roc, x,
input=c("threshold", "specificity", "sensitivity"),
ret=c("threshold", "specificity", "sensitivity"),
best.method=c("youden", "closest.topleft"), best.weights=c(1, 0.5),
best.policy = c("stop", "omit", "random"),
conf.level=0.95, boot.n=2000,
boot.stratified=TRUE,
progress=getOption("pROCProgress")$name, ...)
\S3method{ci.coords}{formula}(formula, data, ...)
\S3method{ci.coords}{smooth.roc}(smooth.roc, x,
input=c("specificity", "sensitivity"), ret=c("specificity", "sensitivity"),
best.method=c("youden", "closest.topleft"), best.weights=c(1, 0.5),
best.policy = c("stop", "omit", "random"),
conf.level=0.95, boot.n=2000,
boot.stratified=TRUE,
progress=getOption("pROCProgress")$name, ...)
\S3method{ci.coords}{default}(response, predictor, ...)
}
\arguments{
\item{roc, smooth.roc}{a \dQuote{roc} object from the
\code{\link{roc}} function, or a \dQuote{smooth.roc} object from the
\code{\link[=smooth.roc]{smooth}} function.
}
\item{response, predictor}{arguments for the \code{\link{roc}} function.}
\item{formula, data}{a formula (and possibly a data object) of type
response~predictor for the \code{\link{roc}} function.
}
\item{x, input, ret, best.method, best.weights}{Arguments passed to \code{\link{coords}}.
See there for more details. The only difference is on the \code{x} argument which cannot be
\dQuote{all} or \dQuote{local maximas}.
}
\item{best.policy}{The policy follow when multiple \dQuote{best} thresholds are returned by \code{\link{coords}}.
\dQuote{stop} will abort the processing with \code{\link{stop}} (default),
\dQuote{omit} will ignore the sample (as in \code{\link{NA}})
and \dQuote{random} will select one of the threshold randomly.
}
\item{conf.level}{the width of the confidence interval as [0,1], never
in percent. Default: 0.95, resulting in a 95\% CI.
}
\item{boot.n}{the number of bootstrap replicates. Default: 2000.}
\item{boot.stratified}{should the bootstrap be stratified (default, same number
of cases/controls in each replicate than in the original sample) or
not.
}
\item{progress}{the name of progress bar to display. Typically
\dQuote{none}, \dQuote{win}, \dQuote{tk} or \dQuote{text} (see the
\code{name} argument to \code{\link[plyr]{create_progress_bar}} for
more information), but a list as returned by \code{\link[plyr]{create_progress_bar}}
is also accepted. See also the \dQuote{Progress bars} section of
\link[=pROC-package]{this package's documentation}.
}
\item{\dots}{further arguments passed to or from other methods,
especially arguments for \code{\link{roc}} and \code{ci.coords.roc}
when calling \code{ci.coords.default} or \code{ci.coords.formula}.
Arguments for \code{\link{txtProgressBar}} (only
\code{char} and \code{style}) if applicable.
}
}
\details{
\code{ci.coords.formula} and \code{ci.coords.default} are convenience methods
that build the ROC curve (with the \code{\link{roc}} function) before
calling \code{ci.coords.roc}. You can pass them arguments for both
\code{\link{roc}} and \code{ci.coords.roc}. Simply use \code{ci.coords}
that will dispatch to the correct method.
This function creates \code{boot.n} bootstrap replicate of the ROC
curve, and evaluates the coordinates specified by the \code{x}, \code{input},
\code{ret}, \code{best.method} and \code{best.weights} arguments. Then it computes the
confidence interval as the percentiles given by \code{conf.level}.
When \code{x="best"}, the best threshold is determined at each bootstrap
iteration, effectively assessing the confidence interval of choice of the "best"
threshold itself. This differs from the behavior of \code{\link{ci.thresholds}},
where the "best" threshold is assessed on the given ROC curve before
resampling.
For more details about the bootstrap, see the Bootstrap section in
\link[=pROC-package]{this package's documentation}.
}
\section{Warnings}{
If \code{boot.stratified=FALSE} and the sample has a large imbalance between
cases and controls, it could happen that one or more of the replicates
contains no case or control observation, producing a \code{NA} area.
The warning \dQuote{NA value(s) produced during bootstrap were ignored.}
will be issued and the observation will be ignored. If you have a large
imbalance in your sample, it could be safer to keep
\code{boot.stratified=TRUE}.
This warning will also be displayed if you chose \code{best.policy = "omit"}
and a ROC curve with multiple \dQuote{best} threshold was generated
during at least one of the replicates.
}
\value{
\bold{Note:} changed in version 1.16.
A list of the same length as \code{ret} and named as \code{ret}, and of
class \dQuote{ci.thresholds}, \dQuote{ci} and \dQuote{list} (in this order).
Each element of the list is a matrix of the confidence intervals with
rows given by \code{x} and with 3 columns, the lower bound of the CI,
the median, and the upper bound of the CI.
Additionally, the list has the following attributes:
\item{conf.level}{the width of the CI, in fraction.}
\item{boot.n}{the number of bootstrap replicates.}
\item{boot.stratified}{whether or not the bootstrapping was stratified.}
\item{input}{the input coordinate, as given in argument.}
\item{x}{the coordinates used to calculate the CI, as given in argument.}
\item{ret}{the return values, as given in argument or substituted by
\code{link{coords}}.}
\item{roc}{the object of class \dQuote{\link{roc}} that was used to
compute the CI.
}
}
\references{
James Carpenter and John Bithell (2000) ``Bootstrap condence intervals:
when, which, what? A practical guide for medical statisticians''.
\emph{Statistics in Medicine} \bold{19}, 1141--1164.
DOI: \doi{10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F}.
Tom Fawcett (2006) ``An introduction to ROC analysis''. \emph{Pattern
Recognition Letters} \bold{27}, 861--874. DOI:
\doi{10.1016/j.patrec.2005.10.010}.
Hadley Wickham (2011) ``The Split-Apply-Combine Strategy for Data Analysis''. \emph{Journal of Statistical Software}, \bold{40}, 1--29.
URL: \doi{10.18637/jss.v040.i01}.
}
\seealso{
\code{\link{roc}},
\code{\link{coords}},
\code{\link{ci}}
CRAN package \pkg{plyr}, employed in this function.
}
\examples{
# Create a ROC curve:
data(aSAH)
roc1 <- roc(aSAH$outcome, aSAH$s100b)
## Basic example ##
\dontrun{
ci.coords(roc1, x="best", input = "threshold",
ret=c("specificity", "ppv", "tp"))
## More options ##
ci.coords(roc1, x=0.9, input = "sensitivity", ret="specificity")
ci.coords(roc1, x=0.9, input = "sensitivity", ret=c("specificity", "ppv", "tp"))
ci.coords(roc1, x=c(0.1, 0.5, 0.9), input = "sensitivity", ret="specificity")
ci.coords(roc1, x=c(0.1, 0.5, 0.9), input = "sensitivity", ret=c("specificity", "ppv", "tp"))
# Return everything we can:
rets <- c("threshold", "specificity", "sensitivity", "accuracy", "tn", "tp", "fn", "fp", "npv",
"ppv", "1-specificity", "1-sensitivity", "1-accuracy", "1-npv", "1-ppv")
ci.coords(roc1, x="best", input = "threshold", ret=rets)}\dontshow{
ci.coords(roc1, x=0.9, input = "sensitivity", ret="specificity", boot.n=10)
ci.coords(roc1, x=0.9, input = "sensitivity", ret=c("specificity", "ppv", "tp"), boot.n=10)
ci.coords(roc1, x=c(0.1, 0.5, 0.9), input = "sensitivity", ret="specificity", boot.n=10)
ci.coords(roc1, x=c(0.1, 0.5, 0.9), input = "sensitivity", ret=c("specificity", "ppv", "tp"), boot.n=10)
rets <- c("threshold", "specificity", "sensitivity", "accuracy", "tn", "tp", "fn", "fp", "npv",
"ppv", "1-specificity", "1-sensitivity", "1-accuracy", "1-npv", "1-ppv")
ci.coords(roc1, x="best", input = "threshold", ret=rets, boot.n=10)}
## On smoothed ROC curves with bootstrap ##
\dontrun{
ci.coords(smooth(roc1), x=0.9, input = "sensitivity", ret=c("specificity", "ppv", "tp"))}\dontshow{
ci.coords(smooth(roc1), x=0.9, input = "sensitivity", ret=c("specificity", "ppv", "tp"), boot.n = 10)}
}
\keyword{univar}
\keyword{nonparametric}
\keyword{utilities}
\keyword{roc}
|