1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
|
\encoding{UTF-8}
\name{coords}
\alias{coords}
\alias{coords.roc}
\alias{coords.smooth.roc}
\title{
Coordinates of a ROC curve
}
\description{
This function returns the coordinates of the ROC curve at one
or several specified point(s).
}
\usage{
coords(...)
\S3method{coords}{roc}(roc, x, input="threshold", ret=c("threshold",
"specificity", "sensitivity"),
as.list=FALSE, drop=TRUE, best.method=c("youden", "closest.topleft"),
best.weights=c(1, 0.5), transpose = FALSE, as.matrix=FALSE, ...)
\S3method{coords}{smooth.roc}(smooth.roc, x, input, ret=c("specificity",
"sensitivity"), as.list=FALSE, drop=TRUE, best.method=c("youden",
"closest.topleft"), best.weights=c(1, 0.5), transpose = FALSE,
as.matrix=FALSE, ...)
}
\arguments{
\item{roc, smooth.roc}{a \dQuote{roc} object from the
\code{\link{roc}} function, or a \dQuote{smooth.roc} object from the
\code{\link[=smooth.roc]{smooth}} function.
}
\item{x}{
the coordinates to look for. Numeric (if so, their meaning is
defined by the \code{input} argument) or one of \dQuote{all} (all
the points of the ROC curve), \dQuote{local maximas} (the local
maximas of the ROC curve) or \dQuote{best} (see \code{best.method}
argument). If missing or \code{NULL}, defaults to \dQuote{all}.
}
\item{input}{
If \code{x} is numeric, the kind of input coordinate (x).
Typically one of \dQuote{threshold}, \dQuote{specificity} or
\dQuote{sensitivity}, but can be any of the monotone coordinate available,
see the \dQuote{Valid input} column under \dQuote{Available coordinates}.
Can be shortened like \code{ret}. Defaults to \dQuote{threshold}. Note
that \dQuote{threshold} is not allowed in \code{coords.smooth.roc} and that
the argument is ignored when \code{x} is a character.
}
\item{ret}{The coordinates to return. See \dQuote{Available coordinates}
section below. Alternatively, the single value \dQuote{all} can be used to return
every coordinate available.
}
\item{as.list}{DEPRECATED. If the returned object must be a list.
Will be removed in a future version.
}
\item{drop}{If \code{TRUE} the result is coerced to the lowest
possible dimension, as per \link{Extract}. By default only drops
if \code{transpose = TRUE} and either \code{ret} or \code{x} is
of length 1.
}
\item{best.method}{if \code{x="best"}, the method to determine the
best threshold. Defaults to "youden". See details in the
\sQuote{Best thresholds} section.
}
\item{best.weights}{if \code{x="best"}, the weights to determine the
best threshold. See details in the \sQuote{Best thresholds} section.
}
\item{transpose}{whether
to return the thresholds in columns (\code{TRUE}) or rows (\code{FALSE}).
Since pROC 1.16 the default value is \code{FALSE}.
See \link{coords_transpose} for more details the change.
}
\item{as.matrix}{if \code{transpose} is \code{FALSE}, whether to return
a \code{\link{matrix}} (\code{TRUE}) or a \code{\link{data.frame}}
(\code{FALSE}, the default). A \code{data.frame} is more convenient
and flexible to use, but incurs a slight speed penalty. Consider
setting this argument to \code{TRUE} if you are calling the function
repeatedly.
}
\item{\dots}{further arguments passed from other methods. Ignored.}
}
\details{
This function takes a \dQuote{roc} or \dQuote{smooth.roc} object as
first argument, on which the coordinates will be determined. The
coordinates are defined by the \code{x} and \code{input}
arguments. \dQuote{threshold} coordinates cannot be determined in a
smoothed ROC.
If \code{input="threshold"}, the coordinates for the threshold
are reported, even if the exact threshold do not define the ROC
curve. The following convenience characters are allowed: \dQuote{all},
\dQuote{local maximas} and \dQuote{best}. They will return all the
thresholds, only the thresholds defining local maximas (upper angles of the
ROC curve), or only the threshold(s) corresponding to the best sum of
sensitivity + specificity respectively. Note that \dQuote{best} can
return more than one threshold. If \code{x} is a character, the
coordinates are limited to the thresholds within the partial AUC if it
has been defined, and not necessarily to the whole curve.
For \code{input="specificity"} and \code{input="sensitivity"},
the function checks if the specificity or sensitivity is one of the
points of the ROC curve (in \code{roc$sensitivities} or
\code{roc$specificities}). More than one point may match (in
\emph{step} curves), then only the upper-left-most point coordinates
are returned. Otherwise,
the specificity and specificity of the point is interpolated and
\code{NA} is returned as threshold.
The coords function in this package is a generic, but it might be
superseded by functions in other packages such as
\pkg{colorspace} or \pkg{spatstat} if they are loaded after
\pkg{pROC}. In this case, call the \code{pROC::coords} explicitly.
\subsection{Best thresholds}{
If \code{x="best"}, the \code{best.method} argument controls how the
optimal threshold is determined.
\describe{
\item{\dQuote{youden}}{
Youden's J statistic (Youden, 1950) is employed (default). The optimal
cut-off is the threshold that maximizes the distance to the identity
(diagonal) line. Can be shortened to \dQuote{y}.
The optimality criterion is:
\deqn{max(sensitivities + specificities)}{max(sensitivities + specificities)}
}
\item{\dQuote{closest.topleft}}{
The optimal threshold is the point closest to the top-left part of
the plot with perfect sensitivity or specificity. Can be shortened
to \dQuote{c} or \dQuote{t}.
The optimality criterion is:
\deqn{min((1 - sensitivities)^2 + (1- specificities)^2)}{min((1 - sensitivities)^2 + (1- specificities)^2)}
}
}
In addition, weights can be supplied if false positive and false
negative predictions are not equivalent: a numeric vector of length 2
to the \code{best.weights} argument. The elements define
\enumerate{
\item the relative cost of of a false negative classification (as compared with a false positive classification)
\item the prevalence, or the proportion of cases in the population (\eqn{\frac{n_{cases}}{n_{controls}+n_{cases}}}{n.cases/(n.controls+n.cases)}).
}
The optimality criteria are modified as proposed by Perkins and Schisterman:
\describe{
\item{\dQuote{youden}}{
\deqn{max(sensitivities + r * specificities)}{max(sensitivities + r \times specificities)}
}
\item{\dQuote{closest.topleft}}{
\deqn{min((1 - sensitivities)^2 + r * (1- specificities)^2)}{min((1 - sensitivities)^2 + r \times (1- specificities)^2)}
}
}
with
\deqn{r = \frac{1 - prevalence}{cost * prevalence}}{r = (1 - prevalence) / (cost * prevalence)}
By default, prevalence is 0.5 and cost is 1 so that no weight is
applied in effect.
Note that several thresholds might be equally optimal.
}
\subsection{Available coordinates}{
The following table lists the coordinates that are available in the \code{ret}
and \code{input} arguments.
\tabular{rllll}{
Value \tab Description \tab Formula \tab Synonyms \tab Valid input \cr
\code{threshold} \tab The threshold value \tab - \tab - \tab Yes \cr
\code{tn} \tab True negative count \tab - \tab - \tab Yes \cr
\code{tp} \tab True positive count \tab - \tab - \tab Yes \cr
\code{fn} \tab False negative count \tab - \tab - \tab Yes \cr
\code{fp} \tab False positive count \tab - \tab - \tab Yes \cr
\code{specificity} \tab Specificity \tab tn / (tn + fp) \tab tnr \tab Yes \cr
\code{sensitivity} \tab Sensitivity \tab tp / (tp + fn) \tab recall, tpr \tab Yes \cr
\code{accuracy} \tab Accuracy \tab (tp + tn) / N \tab - \tab No \cr
\code{npv} \tab Negative Predictive Value \tab tn / (tn + fn) \tab - \tab No \cr
\code{ppv} \tab Positive Predictive Value \tab tp / (tp + fp) \tab precision \tab No \cr
\code{precision} \tab Precision \tab tp / (tp + fp) \tab ppv \tab No \cr
\code{recall} \tab Recall \tab tp / (tp + fn) \tab sensitivity, tpr \tab Yes \cr
\code{tpr} \tab True Positive Rate \tab tp / (tp + fn) \tab sensitivity, recall \tab Yes \cr
\code{fpr} \tab False Positive Rate \tab fp / (tn + fp) \tab 1-specificity \tab Yes \cr
\code{tnr} \tab True Negative Rate \tab tn / (tn + fp) \tab specificity \tab Yes \cr
\code{fnr} \tab False Negative Rate \tab fn / (tp + fn) \tab 1-sensitivity \tab Yes \cr
\code{fdr} \tab False Discovery Rate \tab fp / (tp + fp) \tab 1-ppv \tab No \cr
\code{youden} \tab Youden Index \tab
se + r * sp
\tab - \tab No \cr
\code{closest.topleft} \tab Distance to the top left corner of the ROC space \tab
- ((1 - se)^2 + r * (1 - sp)^2)
\tab - \tab No \cr
}
The value \dQuote{threshold} is not allowed in \code{coords.smooth.roc}.
Values can be shortenend (for example to \dQuote{thr}, \dQuote{sens} and \dQuote{spec}, or even to
\dQuote{se}, \dQuote{sp} or \dQuote{1-np}). In addition, some values can be prefixed with
\code{1-} to get their complement:
\code{1-specificity}, \code{1-sensitivity}, \code{1-accuracy}, \code{1-npv}, \code{1-ppv}.
The values \code{npe} and \code{ppe} are automatically replaced with
\code{1-npv} and \code{1-ppv}, respectively (and will therefore not appear
as is in the output, but as \code{1-npv} and \code{1-ppv} instead).
These must be used verbatim in ROC curves with \code{percent=TRUE}
(ie. \dQuote{100-ppv} is never accepted).
The \dQuote{youden} and \dQuote{closest.topleft} are weighted with \code{r},
according to the value of the \code{best.weights} argument. See the
\dQuote{Best thresholds} section above for more details.
For \code{ret}, the single value \dQuote{all} can be used to return
every coordinate available.
}
} % details
\value{
Depending on the length of \code{x} and \code{as.list} argument.
\tabular{lll}{
\tab
length(x) == 1 or length(ret) == 1 \tab
length(x) > 1 or length(ret) > 1 or drop == FALSE
\cr
\code{as.list=TRUE} \tab
a list of the length of, in the order of, and named after, \code{ret}. \tab
a list of the length of, and named after, \code{x}. Each element of this list is a list of the length of, in the order of, and named after, \code{ret}. \cr
\code{as.list=FALSE} \tab
a numeric vector of the length of, in the order of, and named after, \code{ret} (if \code{length(x) == 1})
or a numeric vector of the length of, in the order of, and named after, \code{x} (if \code{length(ret) == 1}.\tab
a numeric matrix with one row for each \code{ret} and one column for each \code{x}\cr
}
In all cases if \code{input="specificity"} or \code{input="sensitivity"}
and interpolation was required, threshold is returned as \code{NA}.
Note that if giving a character as \code{x} (\dQuote{all},
\dQuote{local maximas} or \dQuote{best}), you cannot predict the
dimension of the return value unless \code{drop=FALSE}. Even
\dQuote{best} may return more than one value (for example if the ROC
curve is below the identity line, both extreme points).
\code{coords} may also return \code{NULL} when there a partial area is
defined but no point of the ROC curve falls within the region.
}
\references{
Neil J. Perkins, Enrique F. Schisterman (2006) ``The Inconsistency of "Optimal" Cutpoints
Obtained using Two Criteria based on the Receiver Operating
Characteristic Curve''. \emph{American Journal of Epidemiology}
\bold{163}(7), 670--675. DOI: \doi{10.1093/aje/kwj063}.
Xavier Robin, Natacha Turck, Alexandre Hainard, \emph{et al.}
(2011) ``pROC: an open-source package for R and S+ to analyze and
compare ROC curves''. \emph{BMC Bioinformatics}, \bold{7}, 77.
DOI: \doi{10.1186/1471-2105-12-77}.
W. J. Youden (1950) ``Index for rating diagnostic tests''. \emph{Cancer},
\bold{3}, 32--35. DOI:
\doi{10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3}.
}
\seealso{
\code{\link{roc}}, \code{\link{ci.coords}}
}
\examples{
# Create a ROC curve:
data(aSAH)
roc.s100b <- roc(aSAH$outcome, aSAH$s100b, percent = TRUE)
# Get the coordinates of S100B threshold 0.55
coords(roc.s100b, 0.55, transpose = FALSE)
# Get the coordinates at 50\% sensitivity
coords(roc=roc.s100b, x=50, input="sensitivity", transpose = FALSE)
# Can be abbreviated:
coords(roc.s100b, 50, "se", transpose = FALSE)
# Works with smoothed ROC curves
coords(smooth(roc.s100b), 90, "specificity", transpose = FALSE)
# Get the sensitivities for all thresholds
cc <- coords(roc.s100b, "all", ret="sensitivity", transpose = FALSE)
print(cc$sensitivity)
# Get the best threshold
coords(roc.s100b, "best", ret="threshold", transpose = FALSE)
# Get the best threshold according to different methods
roc.ndka <- roc(aSAH$outcome, aSAH$ndka, percent=TRUE)
coords(roc.ndka, "best", ret="threshold", transpose = FALSE,
best.method="youden") # default
coords(roc.ndka, "best", ret="threshold", transpose = FALSE,
best.method="closest.topleft")
# and with different weights
coords(roc.ndka, "best", ret="threshold", transpose = FALSE,
best.method="youden", best.weights=c(50, 0.2))
coords(roc.ndka, "best", ret="threshold", transpose = FALSE,
best.method="closest.topleft", best.weights=c(5, 0.2))
# This is available with the plot.roc function too:
plot(roc.ndka, print.thres="best", print.thres.best.method="youden",
print.thres.best.weights=c(50, 0.2))
# Return more values:
coords(roc.s100b, "best", ret=c("threshold", "specificity", "sensitivity", "accuracy",
"precision", "recall"), transpose = FALSE)
# Return all values
coords(roc.s100b, "best", ret = "all", transpose = FALSE)
# You can use coords to plot for instance a sensitivity + specificity vs. cut-off diagram
plot(specificity + sensitivity ~ threshold,
coords(roc.ndka, "all", transpose = FALSE),
type = "l", log="x",
subset = is.finite(threshold))
# Plot the Precision-Recall curve
plot(precision ~ recall,
coords(roc.ndka, "all", ret = c("recall", "precision"), transpose = FALSE),
type="l", ylim = c(0, 100))
# Alternatively plot the curve with TPR and FPR instead of SE/SP
# (identical curve, only the axis change)
plot(tpr ~ fpr,
coords(roc.ndka, "all", ret = c("tpr", "fpr"), transpose = FALSE),
type="l")
}
\keyword{univar}
\keyword{nonparametric}
\keyword{utilities}
\keyword{roc}
|