1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
|
\encoding{UTF-8}
\name{pROC-package}
\alias{pROC-package}
\alias{pROC}
\docType{package}
\title{pROC}
\description{
Tools for visualizing, smoothing and comparing receiver operating
characteristic (ROC curves). (Partial) area under the curve (AUC) can
be compared with statistical tests based on U-statistics or
bootstrap. Confidence intervals can be computed for (p)AUC or ROC
curves. Sample size / power computation for one or two ROC curves are available.
}
\details{
The basic unit of the pROC package is the \code{\link{roc}} function. It
will build a ROC curve, smooth it if requested (if \code{smooth=TRUE}),
compute the AUC (if \code{auc=TRUE}), the confidence interval (CI) if
requested (if \code{ci=TRUE}) and plot the curve if requested (if
\code{plot=TRUE}).
The \code{\link{roc}} function will call \code{\link[=smooth.roc]{smooth}},
\code{\link{auc}},
\code{\link{ci}} and \code{\link{plot}} as necessary. See these
individual functions for the arguments that can be passed to them
through \code{\link{roc}}. These function can be called separately.
Two paired (that is \code{\link{roc}} objects with the same
\code{response}) or unpaired (with different \code{response}) ROC
curves can be compared with the \code{\link{roc.test}} function.
}
\section{Citation}{
If you use pROC in published research, please cite the following paper:
Xavier Robin, Natacha Turck, Alexandre Hainard, Natalia Tiberti,
Frédérique Lisacek, Jean-Charles Sanchez and Markus Müller (2011).
``pROC: an open-source package for R and S+ to analyze and compare ROC
curves''. \emph{BMC Bioinformatics}, \bold{12}, p. 77. DOI:
\doi{10.1186/1471-2105-12-77}
Type \code{citation("pROC")} for a BibTeX entry.
The authors would be glad to hear how pROC is employed. You are kindly
encouraged to notify Xavier Robin <pROC-cran@xavier.robin.name>
about any work you publish.
}
\section{Abbreviations}{
The following abbreviations are employed extensively in this package:
\itemize{
\item ROC: receiver operating characteristic
\item AUC: area under the ROC curve
\item pAUC: partial area under the ROC curve
\item CI: confidence interval
\item SP: specificity
\item SE: sensitivity
}
}
\section{Functions}{
\tabular{ll}{
\code{\link{roc}} \tab Build a ROC curve\cr
\code{\link{are.paired}} \tab Dertermine if two ROC curves are paired \cr
\code{\link{auc}} \tab Compute the area under the ROC curve \cr
\code{\link{ci}} \tab Compute confidence intervals of a ROC curve \cr
\code{\link{ci.auc}} \tab Compute the CI of the AUC \cr
\code{\link{ci.coords}} \tab Compute the CI of arbitrary coordinates \cr
\code{\link{ci.se}} \tab Compute the CI of sensitivities at given specificities \cr
\code{\link{ci.sp}} \tab Compute the CI of specificities at given sensitivities \cr
\code{\link{ci.thresholds}} \tab Compute the CI of specificity and sensitivity of thresholds \cr
\code{\link{ci.coords}} \tab Compute the CI of arbitrary coordinates \cr
\code{\link{coords}} \tab Coordinates of the ROC curve \cr
\code{\link[=cov.roc]{cov}} \tab Covariance between two AUCs\cr
\code{\link{ggroc}} \tab Plot a ROC curve with \pkg{ggplot2}\cr
\code{\link{has.partial.auc}} \tab Determine if the ROC curve have a partial AUC\cr
\code{\link{lines.roc}} \tab Add a ROC line to a ROC plot \cr
\code{\link{plot.ci}} \tab Plot CIs \cr
\code{\link[=plot.roc]{plot}} \tab Plot a ROC curve \cr
\code{\link{power.roc.test}} \tab Sample size and power computation \cr
\code{\link[=print.roc]{print}} \tab Print a ROC curve object \cr
\code{\link{roc.test}} \tab Compare two ROC curves \cr
\code{\link[=smooth.roc]{smooth}} \tab Smooth a ROC curve \cr
\code{\link[=var.roc]{var}} \tab Variance of the AUC
}
}
\section{Dataset}{
This package comes with a dataset of 141 patients with aneurysmal
subarachnoid hemorrhage: \code{\link{aSAH}}.
}
\section{Installing and using}{
To install this package, make sure you are connected to the internet and issue the following command in the R prompt:
\preformatted{
install.packages("pROC")
}
To load the package in R:
\preformatted{
library(pROC)
}
}
\section{Experimental: pipelines}{
Since version 1.15.0, the \code{\link{roc}} function can be used in pipelines, for instance with \pkg{dplyr} or \pkg{magrittr}. This is still a highly experimental feature and will change significantly in future versions (see \href{https://github.com/xrobin/pROC/issues/54}{issue 54}).
The \code{\link{roc.data.frame}} method supports both standard and non-standard evaluation (NSE), and the \code{\link{roc_}}
function supports standard evaluation only.
\preformatted{
library(dplyr)
aSAH \%>\%
filter(gender == "Female") \%>\%
roc(outcome, s100b)
}
By default it returns the \code{\link{roc}} object, which can then be piped to
the \code{\link{coords}} function to extract coordinates that can be used
in further pipelines.
\preformatted{
aSAH \%>\%
filter(gender == "Female") \%>\%
roc(outcome, s100b) \%>\%
coords(transpose=FALSE) \%>\%
filter(sensitivity > 0.6,
specificity > 0.6)
}
More details and use cases are available in the \code{\link{roc}} help page.
}
\section{Bootstrap}{
All the bootstrap operations for \link[=roc.test]{significance testing}, \link[=ci]{confidence interval}, \link[=var]{variance} and \link[=cov]{covariance} computation are performed with non-parametric stratified or non-stratified resampling (according to the \code{stratified} argument) and with the percentile method, as described in Carpenter and Bithell (2000) sections 2.1 and 3.3.
Stratification of bootstrap can be controlled
with \code{boot.stratified}. In stratified bootstrap (the default), each replicate
contains the same number of cases and controls than the original
sample. Stratification is especially useful if one group has only
little observations, or if groups are not balanced.
The number of bootstrap replicates is controlled by \code{boot.n}. Higher numbers will give a more precise estimate of the significance tests and confidence intervals
but take more time to compute. 2000 is recommanded by Carpenter and Bithell (2000) for confidence intervals. In our experience this is sufficient for a good estimation of the
first significant digit only, so we recommend the use of 10000 bootstrap replicates to obtain a good estimate of the second significant digit whenever possible.
\subsection{Progress bars}{
A progressbar shows the progress of bootstrap operations. It is handled by the \pkg{plyr} package (Wickham, 2011),
and is created by the \code{progress_*} family of functions.
Sensible defaults are guessed during the package loading:
\itemize{
\item In non-\link{interactive} mode, no progressbar is displayed.
\item In embedded GNU Emacs \dQuote{ESS}, a \code{\link{txtProgressBar}}
#ifdef windows
\item In Windows, a \code{\link{winProgressBar}} bar.
#endif
#ifdef unix
\item In Windows, a \code{winProgressBar} bar.
#endif
\item In other systems with or without a graphical display, a \code{\link{txtProgressBar}}.
}
The default can be changed with the option \dQuote{pROCProgress}. The option must be a list with
a \code{name} item setting the type of progress bar (\dQuote{none}, \dQuote{win}, \dQuote{tk}
or \dQuote{text}). Optional items of the list are \dQuote{width}, \dQuote{char} and \dQuote{style},
corresponding to the arguments to the underlying progressbar functions.
For example, to force a text progress bar:
\preformatted{options(pROCProgress = list(name = "text", width = NA, char = "=", style = 3)}
To inhibit the progress bars completely:
\preformatted{options(pROCProgress = list(name = "none"))}
}
}
\section{Handling large datasets}{
\subsection{Algorithms}{
Over the years, a significant amount of time has been invested in making pROC run faster and faster.
From the naive algorithm iterating over all thresholds implemented in the first version (\code{algorithm = 1}), we went to a
C++ implementation (with \pkg{Rcpp}, \code{algorithm = 3}), and a different algorithm using cummulative sum of responses sorted
by the predictor, which scales only with the number of data points, independently on the number of thresholds (\code{algorithm = 2}).
The curves themselves are identical, but computation time has been decreased massively.
Since version 1.12, pROC was able to automatically select the fastest algorithm for your dataset based on the number of thresholds of the ROC curve.
Initially this number was around 1500 thresholds, above which algorithm 3 was selected. But with pROC 1.15 additional code profiling
enabled us implement additional speedups that brought this number down to less than 100 thresholds.
As the detection of the number of thresholds itself can have a large impact comparatively (up to 10\% now), a new \code{algorithm = 6}
was implemented, which assumes that \code{\link{ordered}} datasets should have relatively few levels, and hence thresholds. These predictors
are processed with \code{algorithm = 3}. Any numeric dataset is now assumed to have a sufficient number of thresholds
to be processed with \code{algorithm = 2} efficiently. In the off-chance that you have a very large numeric dataset with very few thresholds,
\code{algorithm = 3} can be selected manually (in the call to \code{\link{roc}}). For instance with 5 thresholds you can
expect a speedup of around to 3 times. This effect disappears altogether as soon as the curve gets to 50-100 thresholds.
This simple selection should work in most cases. However if you are unsure or want to test it for yourself, use \code{algorithm=0} to run a quick benchmark between 2 and 3. Make sure \pkg{microbenchmark} is installed. Beware, this is very slow as it will repeat the computation 10 times to obtain a decent estimate of each algorithm speed.
\preformatted{
if (!requireNamespace("microbenchmark")) install.packages("microbenchmark")
# First a ROC curve with many thresholds. Algorithm 2 is much faster.
response <- rbinom(5E3, 1, .5)
predictor <- rnorm(5E3)
rocobj <- roc(response, predictor, algorithm = 0)
# Next a ROC curve with few thresholds but more data points
response <- rbinom(1E6, 1, .5)
predictor <- rpois(1E6, 1)
rocobj <- roc(response, predictor, algorithm = 0)
}
}
Other functions have been optimized too, and bottlenecks removed. In particular, the \code{coords} function is orders of magnitude faster in pROC 1.15.
The DeLong algorithm has been improved in versions 1.6, 1.7 and 1.9.1, and currently uses a much more efficient algorithm, both
in computation time and memory footprint. We will keep working on improvements to make pROC more suited to large datasets in the future.
\subsection{Boostrap}{
Bootstrap is typically slow because it involves repeatedly computing the ROC curve (or a part of it).
Some bootstrap functions are faster than others. Typically, \code{\link{ci.thresholds}} is the fastest, and \code{\link{ci.coords}} the slowest. Use \code{\link{ci.coords}} only if the CI you need cannot be computed by the specialized CI functions \code{\link{ci.thresholds}}, \code{\link{ci.se}} and \code{\link{ci.sp}}. Note that \code{\link{ci.auc}} cannot be replaced anyway.
A naive way to speed-up the boostrap is by removing the progress bar:
\preformatted{
rocobj <- roc(response, round(predictor))
system.time(ci(rocobj))
system.time(ci(rocobj, progress = "none"))
}
It is of course possible to reduce the number of boostrap iterations. See the \code{boot.n} argument to \code{\link{ci}}. This will reduce the precision of the bootstrap estimate.
\subsection{Parallel processing}{
Bootstrap operations can be performed in parallel. The backend provided by the \pkg{plyr} package is used, which in turn relies on the \pkg{foreach} package.
To enable parallell processing, you first need to load an adaptor for the \pkg{foreach} package (\pkg{doMC}, \pkg{doMPI}, \pkg{doParallel}, \pkg{doRedis}, \pkg{doRNG} or \pkg{doSNOW})), register the backend, and set \code{parallel=TRUE}.
\preformatted{
library(doParallel)
registerDoParallel(cl <- makeCluster(getOption("mc.cores", 2)))
ci(rocobj, method="bootstrap", parallel=TRUE)
stopCluster(cl)
}
Progress bars are not available when parallel processing is enabled.
}
}
\subsection{Using DeLong instead of boostrap}{
DeLong is an asymptotically exact method to evaluate the uncertainty of an AUC (DeLong \emph{et al.} (1988)). Since version 1.9, pROC uses the algorithm proposed by Sun and Xu (2014) which has an O(N log N) complexity and is always faster than bootstrapping. By default, pROC will choose the DeLong method whenever possible.
\preformatted{
rocobj <- roc(response, round(predictor), algorithm=3)
system.time(ci(rocobj, method="delong"))
system.time(ci(rocobj, method="bootstrap", parallel = TRUE))
}
}
}
\author{
Xavier Robin, Natacha Turck, Jean-Charles Sanchez and Markus Müller
Maintainer: Xavier Robin <pROC-cran@xavier.robin.name>
}
\references{
James Carpenter and John Bithell (2000) ``Bootstrap condence intervals:
when, which, what? A practical guide for medical statisticians''.
\emph{Statistics in Medicine} \bold{19}, 1141--1164.
DOI: \doi{10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F}.
Elisabeth R. DeLong, David M. DeLong and Daniel L. Clarke-Pearson
(1988) ``Comparing the areas under two or more correlated receiver
operating characteristic curves: a nonparametric
approach''. \emph{Biometrics} \bold{44}, 837--845.
Tom Fawcett (2006) ``An introduction to ROC analysis''. \emph{Pattern
Recognition Letters} \bold{27}, 861--874. DOI:
\doi{10.1016/j.patrec.2005.10.010}.
Xavier Robin, Natacha Turck, Alexandre Hainard, \emph{et al.}
(2011) ``pROC: an open-source package for R and S+ to analyze and
compare ROC curves''. \emph{BMC Bioinformatics}, \bold{7}, 77.
DOI: \doi{10.1186/1471-2105-12-77}.
Xu Sun and Weichao Xu (2014) ``Fast Implementation of DeLongs Algorithm for Comparing
the Areas Under Correlated Receiver Operating Characteristic Curves''. \emph{IEEE Signal
Processing Letters}, \bold{21}, 1389--1393.
DOI: \doi{10.1109/LSP.2014.2337313}.
Hadley Wickham (2011) ``The Split-Apply-Combine Strategy for Data Analysis''. \emph{Journal of Statistical Software}, \bold{40}, 1--29.
URL: \doi{10.18637/jss.v040.i01}.
}
\seealso{
CRAN packages \pkg{ROCR}, \pkg{verification} or Bioconductor's \pkg{roc}
for ROC curves.
CRAN packages \pkg{plyr}, \pkg{MASS} and \pkg{logcondens} employed in this package.
}
\examples{
data(aSAH)
## Build a ROC object and compute the AUC ##
roc1 <- roc(aSAH$outcome, aSAH$s100b)
print(roc1)
# With a formula
roc(outcome ~ s100b, aSAH)
# With pipes, dplyr-style:
\dontrun{
library(dplyr)
aSAH \%>\% roc(outcome, s100b)}
# Create a few more curves for the next examples
roc2 <- roc(aSAH$outcome, aSAH$wfns)
roc3 <- roc(aSAH$outcome, aSAH$ndka)
## AUC ##
auc(roc1, partial.auc = c(1, .9))
## Smooth ROC curve ##
smooth(roc1)
## Summary statistics
var(roc1)
cov(roc1, roc3)
## Plot the curve ##
plot(roc1)
# More plotting options, CI and plotting
# with all-in-one syntax:
roc4 <- roc(aSAH$outcome,
aSAH$s100b, percent=TRUE,
# arguments for auc
partial.auc=c(100, 90), partial.auc.correct=TRUE,
partial.auc.focus="sens",
# arguments for ci
ci=TRUE, boot.n=100, ci.alpha=0.9, stratified=FALSE,
# arguments for plot
plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE,
print.auc=TRUE, show.thres=TRUE)
# Add to an existing plot. Beware of 'percent' specification!
roc5 <- roc(aSAH$outcome, aSAH$wfns,
plot=TRUE, add=TRUE, percent=roc4$percent)
## With ggplot2 ##
if (require(ggplot2)) {
# Create multiple curves to plot
rocs <- roc(outcome ~ wfns + s100b + ndka, data = aSAH)
ggroc(rocs)
}
## Coordinates of the curve ##
coords(roc1, "best", ret=c("threshold", "specificity", "1-npv"))
coords(roc2, "local maximas", ret=c("threshold", "sens", "spec", "ppv", "npv"))
## Confidence intervals ##
# CI of the AUC
ci(roc2)
\dontrun{
# CI of the curve
sens.ci <- ci.se(roc1, specificities=seq(0, 100, 5))
plot(sens.ci, type="shape", col="lightblue")
plot(sens.ci, type="bars")}
# need to re-add roc2 over the shape
plot(roc2, add=TRUE)
\dontrun{
# CI of thresholds
plot(ci.thresholds(roc2))}
# In parallel
if (require(doParallel)) {
registerDoParallel(cl <- makeCluster(getOption("mc.cores", 2L)))
\dontrun{ci(roc2, method="bootstrap", parallel=TRUE)}
\dontshow{ci(roc2, method="bootstrap", parallel=TRUE, boot.n=20)}
stopCluster(cl)
}
## Comparisons ##
# Test on the whole AUC
roc.test(roc1, roc2, reuse.auc=FALSE)
\dontrun{
# Test on a portion of the whole AUC
roc.test(roc1, roc2, reuse.auc=FALSE, partial.auc=c(100, 90),
partial.auc.focus="se", partial.auc.correct=TRUE)
# With modified bootstrap parameters
roc.test(roc1, roc2, reuse.auc=FALSE, partial.auc=c(100, 90),
partial.auc.correct=TRUE, boot.n=1000, boot.stratified=FALSE)}
## Power & sample size ##
# Power
# 1 curve
power.roc.test(roc1)
# 2 curves
power.roc.test(roc3, roc2)
# Sample size
# 1 curve
power.roc.test(roc3, power = 0.9)
# 2 curves
power.roc.test(roc1, roc2, power = 0.9)
# Also without ROC objects.
# For instance what AUC would be significantly different from 0.5?
power.roc.test(ncases=41, ncontrols=72, sig.level=0.05, power=0.95)
}
\keyword{package}
\keyword{univar}
\keyword{nonparametric}
\keyword{utilities}
\keyword{print}
\keyword{htest}
\keyword{aplot}
\keyword{hplot}
\keyword{roc}
|