1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
\encoding{UTF-8}
\name{roc.test}
\alias{roc.test}
\alias{roc.test.default}
\alias{roc.test.roc}
\alias{roc.test.formula}
\alias{roc.test.auc}
\alias{roc.test.smooth.roc}
\title{
Compare two ROC curves
}
\description{
This function compares two correlated (or paired) or uncorrelated (unpaired)
ROC curves. Delong and bootstrap methods test for a difference in the
(partial) AUC of the ROC curves. The Venkatraman method tests if the two
curves are perfectly superposed. The sensitivity and specificity methods
test if the sensitivity (respectively specificity) of the ROC curves are
different at the given level of specificity (respectively sensitivity).
Several syntaxes are available: two object of class roc (which can be AUC
or smoothed ROC), or either three vectors (response, predictor1, predictor2)
or a response vector and a matrix or data.frame with two columns
(predictors).
}
\usage{
# roc.test(...)
\S3method{roc.test}{roc}(roc1, roc2, method=c("delong", "bootstrap",
"venkatraman", "sensitivity", "specificity"), sensitivity = NULL,
specificity = NULL, alternative = c("two.sided", "less", "greater"),
paired=NULL, reuse.auc=TRUE, boot.n=2000, boot.stratified=TRUE,
ties.method="first", progress=getOption("pROCProgress")$name,
parallel=FALSE, conf.level=0.95, ...)
\S3method{roc.test}{auc}(roc1, roc2, ...)
\S3method{roc.test}{smooth.roc}(roc1, roc2, ...)
\S3method{roc.test}{formula}(formula, data, ...)
\S3method{roc.test}{default}(response, predictor1, predictor2=NULL,
na.rm=TRUE, method=NULL, ...)
}
\arguments{
\item{roc1, roc2}{the two ROC curves to compare. Either
\dQuote{\link{roc}}, \dQuote{\link{auc}} or
\dQuote{\link{smooth.roc}} objects (types can be mixed).
}
\item{response}{a vector or factor, as for the \link{roc} function.}
\item{predictor1}{a numeric or ordered vector as for the \link{roc} function, or
a matrix or data.frame with predictors two colums.}
\item{predictor2}{only if predictor1 was a vector, the second
predictor as a numeric vector.
}
\item{formula}{a formula of the type response~predictor1+predictor2.
Additional arguments \code{data}, \code{subset} and \code{na.action}
are supported, see \code{\link{model.frame}} for more details.
}
\item{data}{a matrix or data.frame containing the variables in the
formula. See \code{\link{model.frame}} for more details.}
\item{na.rm}{if \code{TRUE}, the observations with \code{NA} values
will be removed.
}
\item{method}{the method to use, either \dQuote{delong},
\dQuote{bootstrap} or \dQuote{venkatraman}. The first letter is sufficient. If omitted, the
appropriate method is selected as explained in details.
}
\item{sensitivity, specificity}{if \code{method="sensitivity"} or
\code{method="specificity"}, the respective level where the test
must be assessed as a numeric of length 1. }
\item{alternative}{specifies the alternative hypothesis. Either of
\dQuote{two.sided}, \dQuote{less} or \dQuote{greater}. The first letter is
sufficient. Default: \dQuote{two.sided}. Only \dQuote{two.sided} is available
with \code{method="venkatraman"}.
}
\item{paired}{a logical indicating whether you want a paired roc.test.
If \code{NULL}, the paired status will be auto-detected by \code{\link{are.paired}}.
If \code{TRUE} but the paired status cannot be assessed by \code{\link{are.paired}}
will produce an error.
}
\item{reuse.auc}{if \code{TRUE} (default) and the \dQuote{roc} objects
contain an \dQuote{auc} field, re-use these specifications for the
test. See the \emph{AUC specification} section for more details.
}
\item{boot.n}{for \code{method="bootstrap"} and \code{method="venkatraman"} only: the number of
bootstrap replicates or permutations. Default: \var{2000}.
}
\item{boot.stratified}{for \code{method="bootstrap"} only:
should the bootstrap be stratified (same number
of cases/controls in each replicate than in the original sample) or
not. Ignored with \code{method="venkatraman"}. Default: \var{TRUE}.
}
\item{ties.method}{for \code{method="venkatraman"} only: argument for
\code{\link{rank}} specifying how ties are handled. Defaults to
\dQuote{first} as described in the paper.
}
\item{progress}{the name of progress bar to display. Typically
\dQuote{none}, \dQuote{win}, \dQuote{tk} or \dQuote{text} (see the
\code{name} argument to \code{\link[plyr]{create_progress_bar}} for
more information), but a list as returned by \code{\link[plyr]{create_progress_bar}}
is also accepted. See also the \dQuote{Progress bars} section of
\link[=pROC-package]{this package's documentation}.
}
\item{parallel}{if TRUE, the bootstrap is processed in parallel, using
parallel backend provided by plyr (foreach).
}
\item{conf.level}{a numeric scalar between 0 and 1 (non-inclusive) which
species the confidence level to use for any calculated CI's.}
\item{\dots}{further arguments passed to or from other methods,
especially arguments for \code{\link{roc}} and \code{roc.test.roc}
when calling \code{roc.test.default} or \code{roc.test.formula}.
Arguments for \code{\link{auc}},
and \code{\link{txtProgressBar}} (only \code{char} and \code{style})
if applicable.
}
}
\details{
This function compares two ROC curves. It is typically called with the two \link{roc} objects to
compare. \code{roc.test.default} is provided as a convenience
method and creates two \link{roc} objects before calling
\code{roc.test.roc}.
Three methods are available: \dQuote{delong}, \dQuote{bootstrap} and \dQuote{venkatraman} (see
\dQuote{Computational details} section below). \dQuote{delong} and
\dQuote{bootstrap} are tests over the AUC whereas \dQuote{venkatraman}
compares the the ROC curves themselves.
Default is to use \dQuote{delong} method except for comparison of partial AUC, smoothed
curves and curves with different \code{direction}, where \code{bootstrap}
is used. Using \dQuote{delong} for partial AUC and smoothed ROCs is not
supported in pROC and result in an error.
It is spurious to use \dQuote{delong} for \code{\link{roc}} with different
\code{direction} (a warning is issued but the spurious comparison is
enforced). \dQuote{venkatraman}'s test cannot be employed to compare smoothed
ROC curves, or curves with partial AUC specifications. In addition,
and comparison of ROC curves with different
\code{direction} should be used with care (a warning is produced as well).
If \code{alternative="two.sided"}, a two-sided test for difference in AUC is performed. If
\code{alternative="less"}, the alternative is that the AUC of roc1 is
smaller than the AUC of roc2. For \code{method="venkatraman"}, only
\dQuote{two.sided} test is available.
If the \code{paired} argument is not provided, the \code{\link{are.paired}} function is
employed to detect the paired status of the ROC curves. It will test if the original \code{response} is
identical between the two ROC curves (this is always the case if the call is made with
\code{roc.test.default}). This detection is unlikely to raise false positives, but
this possibility cannot be excluded entierly. It would require equal sample sizes
and \code{response} values and order in both ROC curves. If it happens to you, use \code{paired=FALSE}.
If you know the ROC curves are paired you can pass \code{paired=TRUE}. However this is
useless as it will be tested anyway.
For \link[=smooth.roc]{smoothed ROC curves}, smoothing is performed again at each
bootstrap replicate with the parameters originally provided.
If a density smoothing was performed with user-provided
\code{density.cases} or \code{density.controls} the bootstrap cannot
be performed and an error is issued.
}
\section{AUC specification}{
The comparison of the AUC of the ROC curves needs a specification of the
AUC. The specification is defined by:
\enumerate{
\item the \dQuote{auc} field in the \dQuote{\link{roc}} objects if
\code{reuse.auc} is set to \code{TRUE} (default)
\item passing the specification to \code{\link{auc}} with \dots
(arguments \code{partial.auc}, \code{partial.auc.correct} and
\code{partial.auc.focus}). In this case, you must ensure either that
the \code{\link{roc}} object do not contain an \code{auc} field (if
you called \code{\link{roc}} with \code{auc=FALSE}), or set
\code{reuse.auc=FALSE}.
}
If \code{reuse.auc=FALSE} the \code{\link{auc}} function will always
be called with \code{\dots} to determine the specification, even if
the \dQuote{\link{roc}} objects do contain an \code{auc} field.
As well if the \dQuote{\link{roc}} objects do not contain an \code{auc}
field, the \code{\link{auc}} function will always be called with
\code{\dots} to determine the specification.
The AUC specification is ignored in the Venkatraman test.
Warning: if the roc object passed to roc.test contains an \code{auc}
field and \code{reuse.auc=TRUE}, \link{auc} is not called and
arguments such as \code{partial.auc} are silently ignored.
}
\section{Computation details}{
With \code{method="bootstrap"}, the processing is done as follow:
\enumerate{
\item \code{boot.n} bootstrap replicates are drawn from the
data. If \code{boot.stratified} is \var{TRUE}, each replicate contains
exactly the same number of controls and cases than the original
sample, otherwise if \var{FALSE} the numbers can vary.
\item for each bootstrap replicate, the AUC of the two ROC curves
are computed and the difference is stored.
\item The following formula is used:
\deqn{D=\frac{AUC1-AUC2}{s}}{D=(AUC1-AUC2)/s}
where s is the standard deviation of
the bootstrap differences and AUC1 and AUC2 the AUC of the two
(original) ROC curves.
\item \var{D} is then compared to the normal distribution,
according to the value of \code{alternative}.
}
See also the Bootstrap section in
\link[=pROC-package]{this package's documentation}.
With \code{method="delong"}, the processing is done as described in
DeLong \emph{et al.} (1988) for paired ROC curves, using the algorithm
of Sun and Xu (2014). Only comparison of
two ROC curves is implemented. The method has been extended for
unpaired ROC curves where the p-value is computed with an unpaired
t-test with unequal sample size and unequal variance, with
\deqn{
D=\frac{V^r(\theta^r) - V^s(\theta^s) }{ \sqrt{S^r + S^s}}
}{
D=(V^r(\theta^r) - V^s(\theta^s)) / sqrt(S^r + S^s)
}
With \code{method="venkatraman"}, the processing is done as described
in Venkatraman and Begg (1996) (for paired ROC curves) and Venkatraman
(2000) (for unpaired ROC curves) with \code{boot.n} permutation of
sample ranks (with ties breaking). For consistency reasons, the same argument \code{boot.n} as
in bootstrap defines the number of permutations to execute,
even though no bootstrap is performed.
For \code{method="specificity"}, the test assesses if the sensitivity of
the ROC curves are different at the level of specificity given by the
\code{specificity} argument, which must be a numeric of length 1. Bootstrap is employed as with \code{method="bootstrap"}
and \code{boot.n} and \code{boot.stratified} are available. This is
identical to the test proposed by Pepe \emph{et al.} (2009).
The \code{method="sensitivity"} is very similar, but assesses if the specificity of
the ROC curves are different at the level of sensitivity given by the
\code{sensitivity} argument.
}
\section{Warnings}{
If \dQuote{auc} specifications are different in both roc objects, the
warning \dQuote{Different AUC specifications in the ROC
curves. Enforcing the inconsistency, but unexpected results may be
produced.} is issued. Unexpected results may be produced.
If one or both ROC curves are \dQuote{smooth.roc} objects with
different smoothing specifications, the warning
\dQuote{Different smoothing parameters in the ROC curves. Enforcing
the inconsistency, but unexpected results may be produced.} is issued.
This warning can be benign, especially if ROC curves were generated
with \code{roc(\ldots, smooth=TRUE)} with different arguments to other
functions (such as plot), or if you really want to compare two ROC
curves smoothed differently.
If \code{method="venkatraman"}, and \code{alternative} is
\dQuote{less} or \dQuote{greater}, the warning \dQuote{Only two-sided
tests are available for Venkatraman. Performing two-sided test instead.}
is produced and a two tailed test is performed.
Both DeLong and Venkatraman's test ignores the direction of the ROC curve so that if two
ROC curves have a different differ in the value of
\code{direction}, the warning \dQuote{(DeLong|Venkatraman)'s test should not be
applied to ROC curves with different directions.} is
printed. However, the spurious test is enforced.
If \code{boot.stratified=FALSE} and the sample has a large imbalance between
cases and controls, it could happen that one or more of the replicates
contains no case or control observation, or that there are not enough
points for smoothing, producing a \code{NA} area.
The warning \dQuote{NA value(s) produced during bootstrap were ignored.}
will be issued and the observation will be ignored. If you have a large
imbalance in your sample, it could be safer to keep
\code{boot.stratified=TRUE}.
When both ROC curves have an \code{\link{auc}} of 1 (or 100\%), their variances and covariance will always be null,
and therefore the p-value will always be 1. This is true for both \dQuote{delong}, \dQuote{bootstrap} and
\dQuote{venkatraman} methods. This result is misleading, as the variances and covariance are of course not null.
A \code{\link{warning}} will be displayed to inform of this condition, and of the misleading output.
}
\section{Errors}{
An error will also occur if you give a \code{predictor2} when
\code{predictor1} is a \code{\link{matrix}} or a
\code{\link{data.frame}}, if \code{predictor1} has more than two
columns, or if you do not give a \code{predictor2} when
\code{predictor1} is a vector.
If \code{density.cases} and \code{density.controls} were provided
for smoothing, the error \dQuote{Cannot compute the statistic on ROC
curves smoothed with density.controls and density.cases.} is
issued.
If \code{method="venkatraman"} and one of the ROC curves is smoothed,
the error \dQuote{Using Venkatraman's test for smoothed ROCs is not
supported.} is produced.
With \code{method="specificity"}, the error \dQuote{Argument
'specificity' must be numeric of length 1 for a specificity test.}
is given unless the specificity argument is specified as a numeric of
length 1. The \dQuote{Argument 'sensitivity' must be numeric of length
1 for a sensitivity test.} message is given for
\code{method="sensitivity"} under similar conditions.
}
\value{
A list of class "htest" with following content:
\item{p.value}{the p-value of the test.}
\item{statistic}{the value of the Z (\code{method="delong"}) or D
(\code{method="bootstrap"}) statistics.
}
\item{conf.int}{the confidence interval of the test (currently only returned for the paired DeLong's test). Has an attribute \code{conf.level} specifiying the level of the test.}
\item{alternative}{the alternative hypothesis.}
\item{method}{the character string \dQuote{DeLong's test for two
correlated ROC curves} (if \code{method="delong"}) or
\dQuote{Bootstrap test for two correlated ROC curves} (if
\code{method="bootstrap"}).
}
\item{null.value}{the expected value of the statistic under the null
hypothesis, that is 0.}
\item{estimate}{the AUC in the two ROC curves.}
\item{data.name}{the names of the data that was used.}
\item{parameter}{for \code{method="bootstrap"} only: the values of the
\code{boot.n} and \code{boot.stratified} arguments.
}
}
\section{Acknowledgements}{
We would like to thank E. S. Venkatraman and Colin B. Begg for their
support in the implementation of their test.
}
\references{
Elisabeth R. DeLong, David M. DeLong and Daniel L. Clarke-Pearson
(1988) ``Comparing the areas under two or more correlated receiver
operating characteristic curves: a nonparametric
approach''. \emph{Biometrics} \bold{44}, 837--845.
James A. Hanley and Barbara J. McNeil (1982) ``The meaning and use of
the area under a receiver operating characteristic (ROC)
curve''. \emph{Radiology} \bold{143}, 29--36.
Margaret Pepe, Gary Longton and Holly Janes (2009) ``Estimation and
Comparison of Receiver Operating Characteristic Curves''. \emph{The
Stata journal} \bold{9}, 1.
Xavier Robin, Natacha Turck, Jean-Charles Sanchez and Markus Müller
(2009) ``Combination of protein biomarkers''. \emph{useR! 2009}, Rennes.
\url{https://www.r-project.org/nosvn/conferences/useR-2009/abstracts/user_author.html}
Xavier Robin, Natacha Turck, Alexandre Hainard, \emph{et al.}
(2011) ``pROC: an open-source package for R and S+ to analyze and
compare ROC curves''. \emph{BMC Bioinformatics}, \bold{7}, 77.
DOI: \doi{10.1186/1471-2105-12-77}.
Xu Sun and Weichao Xu (2014) ``Fast Implementation of DeLongs Algorithm for Comparing
the Areas Under Correlated Receiver Operating Characteristic Curves''. \emph{IEEE Signal
Processing Letters}, \bold{21}, 1389--1393.
DOI: \doi{10.1109/LSP.2014.2337313}.
E. S. Venkatraman and Colin B. Begg (1996) ``A distribution-free
procedure for comparing receiver operating characteristic curves from
a paired experiment''. \emph{Biometrika} \bold{83}, 835--848.
DOI: \doi{10.1093/biomet/83.4.835}.
E. S. Venkatraman (2000) ``A Permutation Test to Compare Receiver
Operating Characteristic Curves''. \emph{Biometrics} \bold{56},
1134--1138. DOI: \doi{10.1111/j.0006-341X.2000.01134.x}.
Hadley Wickham (2011) ``The Split-Apply-Combine Strategy for Data Analysis''. \emph{Journal of Statistical Software}, \bold{40}, 1--29.
URL: \doi{10.18637/jss.v040.i01}.
}
\seealso{
\code{\link{roc}}, \code{\link{power.roc.test}}
CRAN package \pkg{plyr}, employed in this function.
}
\examples{
data(aSAH)
# Basic example with 2 roc objects
roc1 <- roc(aSAH$outcome, aSAH$s100b)
roc2 <- roc(aSAH$outcome, aSAH$wfns)
roc.test(roc1, roc2)
\dontrun{
# The latter used Delong's test. To use bootstrap test:
roc.test(roc1, roc2, method="bootstrap")
# Increase boot.n for a more precise p-value:
roc.test(roc1, roc2, method="bootstrap", boot.n=10000)
}
# Alternative syntaxes
roc.test(aSAH$outcome, aSAH$s100b, aSAH$wfns)
roc.test(aSAH$outcome, data.frame(aSAH$s100b, aSAH$wfns))
# If we had a good a priori reason to think that wfns gives a
# better classification than s100b (in other words, AUC of roc1
# should be lower than AUC of roc2):
roc.test(roc1, roc2, alternative="less")
\dontrun{
# Comparison can be done on smoothed ROCs
# Smoothing is re-done at each iteration, and execution is slow
roc.test(smooth(roc1), smooth(roc2))
# or:
roc.test(aSAH$outcome, aSAH$s100b, aSAH$wfns, smooth=TRUE, boot.n=100)
}
# or from an AUC (no smoothing)
roc.test(auc(roc1), roc2)
\dontrun{
# Comparison of partial AUC:
roc3 <- roc(aSAH$outcome, aSAH$s100b, partial.auc=c(1, 0.8), partial.auc.focus="se")
roc4 <- roc(aSAH$outcome, aSAH$wfns, partial.auc=c(1, 0.8), partial.auc.focus="se")
roc.test(roc3, roc4)
# This is strictly equivalent to:
roc.test(roc3, roc4, method="bootstrap")
# Alternatively, we could re-use roc1 and roc2 to get the same result:
roc.test(roc1, roc2, reuse.auc=FALSE, partial.auc=c(1, 0.8), partial.auc.focus="se")
# Comparison on specificity and sensitivity
roc.test(roc1, roc2, method="specificity", specificity=0.9)
roc.test(roc1, roc2, method="sensitivity", sensitivity=0.9)
}
# Spurious use of DeLong's test with different direction:
roc5 <- roc(aSAH$outcome, aSAH$s100b, direction="<")
roc6 <- roc(aSAH$outcome, aSAH$s100b, direction=">")
roc.test(roc5, roc6, method="delong")
\dontrun{
# Comparisons of the ROC curves
roc.test(roc1, roc2, method="venkatraman")
}
# Unpaired tests
roc7 <- roc(aSAH$outcome, aSAH$s100b)
# artificially create an roc8 unpaired with roc7
roc8 <- roc(aSAH$outcome[1:100], aSAH$s100b[1:100])
\dontrun{
roc.test(roc7, roc8, paired=FALSE, method="delong")
roc.test(roc7, roc8, paired=FALSE, method="bootstrap")
roc.test(roc7, roc8, paired=FALSE, method="venkatraman")
roc.test(roc7, roc8, paired=FALSE, method="specificity", specificity=0.9)
}
}
\keyword{multivariate}
\keyword{nonparametric}
\keyword{utilities}
\keyword{htest}
\keyword{roc}
|