File: progressr-intro.md

package info (click to toggle)
r-cran-progressr 0.15.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,132 kB
  • sloc: sh: 13; makefile: 7
file content (1047 lines) | stat: -rw-r--r-- 29,669 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
<!--
%\VignetteIndexEntry{progressr: An Introduction}
%\VignetteAuthor{Henrik Bengtsson}
%\VignetteKeyword{R}
%\VignetteKeyword{package}
%\VignetteKeyword{vignette}
%\VignetteKeyword{Rprofile}
%\VignetteKeyword{Renviron}
%\VignetteEngine{progressr::selfonly}
-->
<!-- DO NOT EDIT THIS FILE! Edit 'OVERVIEW.md' instead and then rebuild this file with 'make vigs' -->
The **[progressr]** package provides a minimal API for reporting
progress updates in [R](https://www.r-project.org/).  The design is to
separate the representation of progress updates from how they are
presented.  What type of progress to signal is controlled by the
developer.  How these progress updates are rendered is controlled by
the end user.  For instance, some users may prefer visual feedback
such as a horizontal progress bar in the terminal, whereas others may
prefer auditory feedback.


<img src="imgs/three_in_chinese.gif" alt="Three strokes writing three in Chinese" style="float: right; margin-right: 1ex; margin-left: 1ex;"/>

Design motto:

> The developer is responsible for providing progress updates but it's
> only the end user who decides if, when, and how progress should be
> presented. No exceptions will be allowed.


## Two Minimal APIs - One For Developers and One For End-Users

<div style="overflow: hidden">
<div style="float: left">
<table style="border: 1px solid #999; box-shadow: 2px 2px 2px #999;">
<tr><th>Developer's API</th></tr>
<tr style="vertical-align: top">
<td>
<p>
1. Set up a progressor with a certain number of steps:
</p>
<pre>
p &lt;- progressor(nsteps)
p &lt;- progressor(along = x)
</pre>

<p>
2. Signal progress:
</p>

<pre>
p()               # one-step progress
p(amount = 0)     # "still alive"
p("loading ...")  # pass on a message
</pre>
</td>
</tr>
</table>
</div>
<div style="float: left">&nbsp;&nbsp;&nbsp;&nbsp;</div>
<div style="float: left">
<table style="border: 1px solid #999; box-shadow: 2px 2px 2px #999;">
<tr><th>End-user's API</th></tr>
<tr style="vertical-align: top">
<td>
<p>
1a. Subscribe to progress updates from everywhere:
</p>

<pre>
handlers(global = TRUE)

y &lt;- slow_sum(1:5)
y &lt;- slow_sum(6:10)
</pre>

<p>
1b. Subscribe to a specific expression:
</p>

<pre>
with_progress({
  y &lt;- slow_sum(1:5)
  y &lt;- slow_sum(6:10)
})
</pre>

<p>
2. Configure how progress is presented:
</p>

<pre>
handlers("progress")
handlers("txtprogressbar", "beepr")
handlers(handler_pbcol(enable_after = 3.0))
handlers(handler_progress(complete = "#"))
</pre>
</td>
</table>
</div>
</div>

## A simple example

Assume that we have a function `slow_sum()` for adding up the values
in a vector.  It is so slow, that we like to provide progress updates
to whoever might be interested in it.  With the **progressr** package,
this can be done as:

```r
slow_sum <- function(x) {
  p <- progressr::progressor(along = x)
  sum <- 0
  for (kk in seq_along(x)) {
    Sys.sleep(0.1)
    sum <- sum + x[kk]
    p(message = sprintf("Adding %g", x[kk]))
  }
  sum
}
```

Note how there are _no_ arguments in the code that specifies how
progress is presented.  The only task for the developer is to decide
on where in the code it makes sense to signal that progress has been
made.  As we will see next, it is up to the end user of this code to
decide whether they want to receive progress updates or not, and, if
so, in what format.


### Without reporting on progress

When calling this function as in:
```r
> y <- slow_sum(1:10)
> y
[1] 55
>
``` 

it will behave as any function and there will be no progress
updates displayed.


### Reporting on progress

If we are only interested in progress for a particular call, we can
do:

```r
> library(progressr)
> with_progress(y <- slow_sum(1:10))
  |====================                               |  40%
```

However, if we want to report on progress from _every_ call, wrapping
the calls in `with_progress()` might become too cumbersome.  If so, we
can enable the global progress handler:

```r
> library(progressr)
> handlers(global = TRUE)
```

so that progress updates are reported on wherever signaled, e.g.

```r
> y <- slow_sum(1:10)
  |====================                               |  40%
> y <- slow_sum(10:1)
  |========================================           |  80%
```

This requires R 4.0.0 or newer.  To disable this again, do:

```r
> handlers(global = FALSE)
```

In the below examples, we will assume `handlers(global = TRUE)` is
already set.


## Customizing how progress is reported

### Terminal-based progress bars

The default is to present progress via `utils::txtProgressBar()`,
which is available on all R installations.  It presents itself as an
ASCII-based horizontal progress bar in the R terminal. This is
rendered as:

![SVG animation of the default "txtprogressbar" progress handler](imgs/handler_txtprogressbar-default.svg)

We can tweak this "txtprogressbar" handler to use red hearts for the
bar, e.g.

```r
handlers(handler_txtprogressbar(char = cli::col_red(cli::symbol$heart)))
```

which results in:

![SVG animation of the "txtprogressbar" progress handler with red hearts](imgs/handler_txtprogressbar-char-ansi.svg)

Another example is:

```r
handlers(handler_pbcol(
      adjust = 1.0,
    complete = function(s) cli::bg_red(cli::col_black(s)),
  incomplete = function(s) cli::bg_cyan(cli::col_black(s))
))
```

which results in:

![SVG animation of the "pbcol" progress handler with text aligned to the right](imgs/handler_pbcol-adjust-right-complete.svg)

To change the default, to, say, `cli_progress_bar()` by the **[cli]**
package, set:

```r
handlers("cli")
```

This progress handler will present itself as:

![SVG animation of the default "cli" progress handler](imgs/handler_cli-default.svg)

To instead use `progress_bar()` by the **[progress]** package, set:

```r
handlers("progress")
```
This progress handler will present itself as:

![SVG animation of the default "progress" progress handler](imgs/handler_progress-default.svg)

To set the default progress handler, or handlers, in all your R
sessions, call `progressr::handlers(...)` in your
<code>~/.Rprofile</code> startup file.



### Auditory progress updates

Progress updates do not have to be presented visually. They can
equally well be communicated via audio. For example, using:

```r
handlers("beepr")
```

will present itself as sounds played at the beginning, while progressing, and at the end (using different **[beepr]** sounds).  There will be _no_ output written to the terminal;

```r
> y <- slow_sum(1:10)
> y
[1] 55
>
```


### Concurrent auditory and visual progress updates

It is possible to have multiple progress handlers presenting progress
updates at the same time.  For example, to get both visual and
auditory updates, use:

```r
handlers("txtprogressbar", "beepr")
```


### Silence all progress

To silence all progress updates, use:

```r
handlers("void")
```


### Further configuration of progress handlers

Above we have seen examples where the `handlers()` takes one or more
strings as input, e.g. `handlers(c("progress", "beepr"))`.  This is
short for a more flexible specification where we can pass a list of
handler functions, e.g.

```r
handlers(list(
  handler_progress(),
  handler_beepr()
))
```

With this construct, we can make adjustments to the default behavior
of these progress handlers.  For example, we can configure the
`format`, `width`, and `complete` arguments of
`progress::progress_bar$new()`, and tell **beepr** to use a different
`finish` sound and generate sounds at most every two seconds by
setting:

```r
handlers(list(
  handler_progress(
    format   = ":spin :current/:total (:message) [:bar] :percent in :elapsed ETA: :eta",
    width    = 60,
    complete = "+"
  ),
  handler_beepr(
    finish   = "wilhelm",
    interval = 2.0
  )
))
```


## Sticky messages

As seen above, some progress handlers present the progress message as
part of its output, e.g. the "progress" handler will display the
message as part of the progress bar.  It is also possible to "push"
the message up together with other terminal output.  This can be done
by adding class attribute `"sticky"` to the progression signaled.
This works for several progress handlers that output to the terminal.
For example, with:

```r
slow_sum <- function(x) {
  p <- progressr::progressor(along = x)
  sum <- 0
  for (kk in seq_along(x)) {
    Sys.sleep(0.1)
    sum <- sum + x[kk]
    p(sprintf("Step %d", kk), class = if (kk %% 5 == 0) "sticky", amount = 0)
    p(message = sprintf("Adding %g", x[kk]))
  }
  sum
}
```

we get

```r
> handlers("txtprogressbar")
> y <- slow_sum(1:30)
Step 5
Step 10
  |====================                               |  43%
```

and

```r
> handlers("progress")
> y <- slow_sum(1:30)
Step 5
Step 10
/ [===============>-------------------------]  43% Adding 13
```


## Use regular output as usual alongside progress updates

In contrast to other progress-bar frameworks, output from `message()`,
`cat()`, `print()` and so on, will _not_ interfere with progress
reported via **progressr**.  For example, say we have:

```r
slow_sqrt <- function(xs) {
  p <- progressor(along = xs)
  lapply(xs, function(x) {
    message("Calculating the square root of ", x)
    Sys.sleep(2)
    p(sprintf("x=%g", x))
    sqrt(x)
  })
}
```

we will get:

```r
> library(progressr)
> handlers(global = TRUE)
> handlers("progress")
> y <- slow_sqrt(1:8)
Calculating the square root of 1
Calculating the square root of 2
- [===========>-----------------------------------]  25% x=2
```

This works because **progressr** will briefly buffer any output
internally and only release it when the next progress update is
received just before the progress is re-rendered in the terminal.
This is why you see a two second delay when running the above example.
Note that, if we use progress handlers that do not output to the
terminal, such as `handlers("beepr")`, then output does not have to be
buffered and will appear immediately.


_Comment_: When signaling a warning using `warning(msg, immediate. =
TRUE)` the message is immediately outputted to the standard-error
stream.  However, this is not possible to emulate when warnings are
intercepted using calling handlers, which are used by
`with_progress()`.  This is a limitation of R that cannot be worked
around.  Because of this, the above call will behave the same as
`warning(msg)` - that is, all warnings will be buffered by R
internally and released only when all computations are done.


## Support for progressr elsewhere

Note that progression updates by **progressr** is designed to work out
of the box for any iterator framework in R.  Below is an set of
examples for the most common ones.


### Base R Apply Functions

```r
library(progressr)
handlers(global = TRUE)

my_fcn <- function(xs) {
  p <- progressor(along = xs)
  lapply(xs, function(x) {
    Sys.sleep(0.1)
    p(sprintf("x=%g", x))
    sqrt(x)
  })
}

my_fcn(1:5)
#  |====================                               |  40%
```


### The foreach package

```r
library(foreach)
library(progressr)
handlers(global = TRUE)

my_fcn <- function(xs) {
  p <- progressor(along = xs)
  foreach(x = xs) %do% {
    Sys.sleep(0.1)
    p(sprintf("x=%g", x))
    sqrt(x)
  }
}

my_fcn(1:5)
#  |====================                               |  40%
```

### The purrr package

```r
library(purrr)
library(progressr)
handlers(global = TRUE)

my_fcn <- function(xs) {
  p <- progressor(along = xs)
  map(xs, function(x) {
    Sys.sleep(0.1)
    p(sprintf("x=%g", x))
    sqrt(x)
  })
}

my_fcn(1:5)
#  |====================                               |  40%
```


### The plyr package

```r
library(plyr)
library(progressr)
handlers(global = TRUE)

my_fcn <- function(xs) {
  p <- progressor(along = xs)
  llply(xs, function(x, ...) {
    Sys.sleep(0.1)
    p(sprintf("x=%g", x))
    sqrt(x)
  })
}

my_fcn(1:5)
#  |====================                               |  40%
```

Note how this solution does not make use of **plyr**'s `.progress`
argument, because the above solution is more powerful and more
flexible, e.g. we have more control on progress updates and their
messages.  However, if you prefer the traditional **plyr** approach,
you can use `.progress = "progressr"`, e.g. `y <- llply(..., .progress
= "progressr")`.




### The knitr package

When compiling ("knitting") an knitr-based vignette, for instance, via
`knitr::knit()`, **[knitr]** shows the progress of code chunks
processed thus far using a progress bar.  In **knitr** (>= 1.42) [to
be released as of 2022-12-12], we can use **progressr** for this
progress reporting.  To do this, set R option `knitr.progress.fun` as:

```r
options(knitr.progress.fun = function(total, labels) {
  p <- progressr::progressor(total, on_exit = FALSE)
  list(
    update = function(i) p(sprintf("chunk: %s", labels[i])),
    done = function() p(type = "finish")
  )
})
```

This configures **knitr** to signal progress via the **progressr**
framework.  To report on these, use:

```r
progressr::handlers(global = TRUE)
```


### Replace any cli progress bars with progressr updates

The **cli** package is used for progress reporting by many several
packages, notably tidyverse packages.  For instance, in **purrr**, you
can do:

```r
y <- purrr::map(1:100, \(x) Sys.sleep(0.1), .progress = TRUE)
```

to report on progress via the **cli** package as `map()` is iterating
over the elements.  Now, instead of using the default, built-in
**cli** progress bar, we can customize **cli** to report on progress
via **progressr** instead.  To do this, set R option
`cli.progress_handlers` as:

```r
options(cli.progress_handlers = "progressr")
```

With this option set, **cli** will now report on progress according to
your `progressr::handlers()` settings.  For example, with:

```r
progressr::handlers(c("beepr", "rstudio"))
```

will report on progress using **beepr** and the RStudio Console
progress panel.

To make **cli** report via **progressr** in all your R session, set
the above R option in your <code>~/.Rprofile</code> startup file.

_Note:_ A **cli** progress bar can have a "name", which can be
specfied in **purrr** function via argument `.progress`,
e.g. `.progress = "processing"`.  This name is then displayed in front
of the progress bar.  However, because the **progressr** framework
does not have a concept of progress "name", they are silently ignored
when using `options(cli.progress_handlers = "progressr")`.



## Parallel processing and progress updates

The **[future]** framework, which provides a unified API for parallel
and distributed processing in R, has built-in support for the kind of
progression updates produced by the **progressr** package.  This means
that you can use it with for instance **[future.apply]**, **[furrr]**,
and **[foreach]** with **[doFuture]**, and **[plyr]** or
**[BiocParallel]** with **doFuture**.  In contrast, _non-future_
parallelization methods such as **parallel**'s `mclapply()` and,
`parallel::parLapply()`, and **foreach** adapters like **doParallel**
do _not_ support progress reports via **progressr**.


### future_lapply() - parallel lapply()

Here is an example that uses `future_lapply()` of the **[future.apply]** package to parallelize on the local machine while at the same time signaling progression updates:

```r
library(future.apply)
plan(multisession)

library(progressr)
handlers(global = TRUE)
handlers("progress", "beepr")

my_fcn <- function(xs) {
  p <- progressor(along = xs)
  future_lapply(xs, function(x, ...) {
    Sys.sleep(6.0-x)
    p(sprintf("x=%g", x))
    sqrt(x)
  })
}

my_fcn(1:5)
# / [================>-----------------------------]  40% x=2
```


### foreach() with doFuture

Here is an example that uses `foreach()` of the **[foreach]** package
together with `%dofuture%` of the **[doFuture]** package to
parallelize while reporting on progress.  This example parallelizes on
the local machine, it works alsof for remote machines:

```r
library(doFuture)    ## %dofuture%
plan(multisession)

library(progressr)
handlers(global = TRUE)
handlers("progress", "beepr")

my_fcn <- function(xs) {
  p <- progressor(along = xs)
  foreach(x = xs) %dofuture% {
    Sys.sleep(6.0-x)
    p(sprintf("x=%g", x))
    sqrt(x)
  }
}

my_fcn(1:5)
# / [================>-----------------------------]  40% x=2
```


For existing code using the traditional `%dopar%` operators of the
**[foreach]** package, we can register the **[doFuture]** adaptor and
use the same **progressr** as above to progress updates;

```r
library(doFuture)
registerDoFuture()      ## %dopar% parallelizes via future
plan(multisession)

library(progressr)
handlers(global = TRUE)
handlers("progress", "beepr")

my_fcn <- function(xs) {
  p <- progressor(along = xs)
  foreach(x = xs) %dopar% {
    Sys.sleep(6.0-x)
    p(sprintf("x=%g", x))
    sqrt(x)
  }
}

my_fcn(1:5)
# / [================>-----------------------------]  40% x=2
```


### future_map() - parallel purrr::map()

Here is an example that uses `future_map()` of the **[furrr]** package
to parallelize on the local machine while at the same time signaling
progression updates:

```r
library(furrr)
plan(multisession)

library(progressr)
handlers(global = TRUE)
handlers("progress", "beepr")

my_fcn <- function(xs) {
  p <- progressor(along = xs)
  future_map(xs, function(x) {
    Sys.sleep(6.0-x)
    p(sprintf("x=%g", x))
    sqrt(x)
  })
}

my_fcn(1:5)
# / [================>-----------------------------]  40% x=2
```

_Note:_ This solution does not involved the `.progress = TRUE`
argument that **furrr** implements.  Because **progressr** is more
generic and because `.progress = TRUE` only supports certain future
backends and produces errors on non-supported backends, I recommended
to stop using `.progress = TRUE` and use the **progressr** package
instead.


### BiocParallel::bplapply() - parallel lapply()

Here is an example that uses `bplapply()` of the **[BiocParallel]**
package to parallelize on the local machine while at the same time
signaling progression updates:

```r
library(BiocParallel)
library(doFuture)
register(DoparParam())  ## BiocParallel parallelizes via %dopar%
registerDoFuture()      ## %dopar% parallelizes via future
plan(multisession)

library(progressr)
handlers(global = TRUE)
handlers("progress", "beepr")

my_fcn <- function(xs) {
  p <- progressor(along = xs)
  bplapply(xs, function(x) {
    Sys.sleep(6.0-x)
    p(sprintf("x=%g", x))
    sqrt(x)
  })
}

my_fcn(1:5)
# / [================>-----------------------------]  40% x=2
```


### plyr::llply(..., .parallel = TRUE) with doFuture

Here is an example that uses `llply()` of the **[plyr]** package to
parallelize on the local machine while at the same time signaling
progression updates:

```r
library(plyr)
library(doFuture)
registerDoFuture()      ## %dopar% parallelizes via future
plan(multisession)

library(progressr)
handlers(global = TRUE)
handlers("progress", "beepr")

my_fcn <- function(xs) {
  p <- progressor(along = xs)
  llply(xs, function(x, ...) {
    Sys.sleep(6.0-x)
    p(sprintf("x=%g", x))
    sqrt(x)
  }, .parallel = TRUE)
}

my_fcn(1:5)
# / [================>-----------------------------]  40% x=2
```

_Note:_ As an alternative to the above, recommended approach, one can
use `.progress = "progressr"` together with `.parallel = TRUE`.  This
requires **plyr** (>= 1.8.7).


### Near-live versus buffered progress updates with futures

As of November 2020, there are four types of **future** backends that are known(*) to provide near-live progress updates:

 1. `sequential`,
 2. `multicore`,
 3. `multisession`, and
 4. `cluster` (local and remote)

Here "near-live" means that the progress handlers will report on
progress almost immediately when the progress is signaled on the
worker.  For all other future backends, the progress updates are only
relayed back to the main machine and reported together with the
results of the futures.  For instance, if `future_lapply(X, FUN)`
chunks up the processing of, say, 100 elements in `X` into eight
futures, we will see progress from each of the 100 elements as they
are done when using a future backend supporting "near-live" updates,
whereas we will only see those updated to be flushed eight times when
using any other types of future backends.

(*) Other future backends may gain support for "near-live" progress
updating later.  Adding support for those is independent of the
**progressr** package.  Feature requests for adding that support
should go to those future-backend packages.



## Note of caution - sending progress updates too frequently

Signaling progress updates comes with some overhead.  In situation
where we use progress updates, this overhead is typically much smaller
than the task we are processing in each step.  However, if the task we
iterate over is quick, then the extra time induced by the progress
updates might end up dominating the overall processing time.  If that
is the case, a simple solution is to only signal progress updates
every n:th step.  Here is a version of `slow_sum()` that signals
progress every 10:th iteration:

```
slow_sum <- function(x) {
  p <- progressr::progressor(length(x) / 10)
  sum <- 0
  for (kk in seq_along(x)) {
    Sys.sleep(0.1)
    sum <- sum + x[kk]
    if (kk %% 10 == 0) p(message = sprintf("Adding %g", x[kk]))
  }
  sum
}
```

The overhead of progress signaling may depend on context.  For
example, in parallel processing with near-live progress updates via
'multisession' futures, each progress update is communicated via a
socket connections back to the main R session.  These connections
might become clogged up if progress updates are too frequent.


## Progress updates in non-interactive mode ("batch mode")

When running R from the command line, R runs in a non-interactive mode
(`interactive()` returns `FALSE`).  The default behavior of
**progressr** is to _not_ report on progress in non-interactive mode.
To reported on progress also then, set R options `progressr.enable` or
environment variable `R_PROGRESSR_ENABLE` to `TRUE`.  For example,

```sh
$ Rscript -e "library(progressr)" -e "with_progress(y <- slow_sum(1:10))"
```

will _not_ report on progress, whereas

```sh
$ export R_PROGRESSR_ENABLE=TRUE
$ Rscript -e "library(progressr)" -e "with_progress(y <- slow_sum(1:10))"
```

will.



## Roadmap

Because this project is under active development, the progressr API is
currently kept at a very minimum.  This will allow for the framework
and the API to evolve while minimizing the risk for breaking code that
depends on it.  The roadmap for developing the API is roughly:

* [x] Provide minimal API for producing progress updates,
      i.e. `progressor()`, `with_progress()`, `handlers()`

* [x] Add support for global progress handlers removing the need for
      the user having to specify `with_progress()`,
      i.e. `handlers(global = TRUE)` and `handlers(global = FALSE)`

* [ ] Make it possible to create a progressor also in the global
      environment (see 'Known issues' below)

* [ ] Add support for nested progress updates

* [ ] Add API to allow users and package developers to design
      additional progression handlers

For a more up-to-date view on what features might be added, see
<https://github.com/futureverse/progressr/issues>.


## Appendix

### Known issues

#### A progressor cannot be created in the global environment

It is not possible to create a progressor in the global environment,
e.g. in the the top-level of a script.  It has to be created inside a
function, within `with_progress({ ... })`, `local({ ... })`, or a
similar construct.  For example, the following:

```r
library(progressr)
handlers(global = TRUE)

xs <- 1:5
p <- progressor(along = xs)
y <- lapply(xs, function(x) {
  Sys.sleep(0.1)
  p(sprintf("x=%g", x))
  sqrt(x)
})
```

results in an error if tried:

```
Error in progressor(along = xs) : 
  A progressor must not be created in the global environment unless wrapped in a
  with_progress() or without_progress() call. Alternatively, create it inside a
  function or in a local() environment to make sure there is a finite life span
  of the progressor
```

The solution is to wrap it in a `local({ ... })` call, or more
explicitly, in a `with_progress({ ... })` call:

```r
library(progressr)
handlers(global = TRUE)

xs <- 1:5
with_progress({
  p <- progressor(along = xs)
  y <- lapply(xs, function(x) {
    Sys.sleep(0.1)
    p(sprintf("x=%g", x))
    sqrt(x)
  })
})
#  |====================                               |  40%
```

The main reason for this is to limit the life span of each progressor.
If we created it in the global environment, there is a significant
risk it would never finish and block all of the following progressors.


#### The global progress handler cannot be set everywhere

It is _not_ possible to call `handlers(global = TRUE)` in all
circumstances.  For example, it cannot be called within `tryCatch()`
and `withCallingHandlers()`;

```r
> tryCatch(handlers(global = TRUE), error = identity)
Error in globalCallingHandlers(NULL) : 
  should not be called with handlers on the stack
```

This is not a bug - neither in **progressr** nor in R itself. It's due
to a conservative design on how _global_ calling handlers should work
in R. If it allowed, there's a risk we might end up getting weird and
unpredictable behaviors when messages, warnings, errors, and other
types of conditions are signaled.

Because `tryCatch()` and `withCallingHandlers()` is used in many
places throughout base R, this means that we also cannot call
`handlers(global = TRUE)` as part of a package's startup process,
e.g. `.onLoad()` or `.onAttach()`.

Another example of this error is if `handlers(global = TRUE)` is used
inside package vignettes and dynamic documents such as Rmarkdown.  In
such cases, the global progress handler has to be enabled _prior_ to
processing the document, e.g.

```r
> progressr::handlers(global = TRUE)
> rmarkdown::render("input.Rmd")
```


### Under the hood

When using the **progressr** package, progression updates are
communicated via R's condition framework, which provides methods for
creating, signaling, capturing, muffling, and relaying conditions.
Progression updates are of classes `progression` and
`immediateCondition`(\*).  The below figure gives an example how
progression conditions are created, signaled, and rendered.

(\*) The `immediateCondition` class of conditions are relayed as soon
as possible by the **[future]** framework, which means that
progression updates produced in parallel workers are reported to the
end user as soon as the main R session have received them.




![](imgs/slow_sum.svg)

_Figure: Sequence diagram illustrating how signaled progression
conditions are captured by `with_progress()`, or the global
progression handler, and relayed to the two progression handlers
'progress' (a progress bar in the terminal) and 'beepr' (auditory)
that the end user has chosen._


### Debugging

To debug progress updates, use:

```r
> handlers("debug")
> with_progress(y <- slow_sum(1:3))
[23:19:52.738] (0.000s => +0.002s) initiate: 0/3 (+0) '' {clear=TRUE, enabled=TRUE, status=}
[23:19:52.739] (0.001s => +0.000s) update: 0/3 (+0) '' {clear=TRUE, enabled=TRUE, status=}
[23:19:52.942] (0.203s => +0.002s) update: 0/3 (+0) '' {clear=TRUE, enabled=TRUE, status=}
[23:19:53.145] (0.407s => +0.001s) update: 0/3 (+0) '' {clear=TRUE, enabled=TRUE, status=}
[23:19:53.348] (0.610s => +0.002s) update: 1/3 (+1) 'P: Adding 1' {clear=TRUE, enabled=TRUE, status=}
M: Adding value 1
[23:19:53.555] (0.817s => +0.004s) update: 1/3 (+0) 'P: Adding 1' {clear=TRUE, enabled=TRUE, status=}
[23:19:53.758] (1.020s => +0.001s) update: 1/3 (+0) 'P: Adding 1' {clear=TRUE, enabled=TRUE, status=}
[23:19:53.961] (1.223s => +0.001s) update: 1/3 (+0) 'P: Adding 1' {clear=TRUE, enabled=TRUE, status=}
[23:19:54.165] (1.426s => +0.001s) update: 1/3 (+0) 'P: Adding 1' {clear=TRUE, enabled=TRUE, status=}
[23:19:54.368] (1.630s => +0.001s) update: 2/3 (+1) 'P: Adding 2' {clear=TRUE, enabled=TRUE, status=}
M: Adding value 2
[23:19:54.574] (1.835s => +0.003s) update: 2/3 (+0) 'P: Adding 2' {clear=TRUE, enabled=TRUE, status=}
[23:19:54.777] (2.039s => +0.001s) update: 2/3 (+0) 'P: Adding 2' {clear=TRUE, enabled=TRUE, status=}
[23:19:54.980] (2.242s => +0.001s) update: 2/3 (+0) 'P: Adding 2' {clear=TRUE, enabled=TRUE, status=}
[23:19:55.183] (2.445s => +0.001s) update: 2/3 (+0) 'P: Adding 2' {clear=TRUE, enabled=TRUE, status=}
[23:19:55.387] (2.649s => +0.001s) update: 3/3 (+1) 'P: Adding 3' {clear=TRUE, enabled=TRUE, status=}
[23:19:55.388] (2.650s => +0.003s) update: 3/3 (+0) 'P: Adding 3' {clear=TRUE, enabled=TRUE, status=}
M: Adding value 3
[23:19:55.795] (3.057s => +0.000s) shutdown: 3/3 (+0) 'P: Adding 3' {clear=TRUE, enabled=TRUE, status=ok}
```



[progressr]: https://cran.r-project.org/package=progressr
[beepr]: https://cran.r-project.org/package=beepr
[cli]: https://cran.r-project.org/package=cli
[progress]: https://cran.r-project.org/package=progress
[purrr]: https://cran.r-project.org/package=purrr
[future]: https://cran.r-project.org/package=future
[foreach]: https://cran.r-project.org/package=foreach
[future.apply]: https://cran.r-project.org/package=future.apply
[doParallel]: https://cran.r-project.org/package=doParallel
[doFuture]: https://cran.r-project.org/package=doFuture
[furrr]: https://cran.r-project.org/package=furrr
[knitr]: https://cran.r-project.org/package=knitr
[pbapply]: https://cran.r-project.org/package=pbapply
[pbmcapply]: https://cran.r-project.org/package=pbmcapply
[plyr]: https://cran.r-project.org/package=plyr
[BiocParallel]: https://www.bioconductor.org/packages/BiocParallel/