1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
|
## This function splits the given formula in response (left) and predictors
## (right).
## @param formula Formula object that specifies a model.
## @return a list containing the plain linear terms, interaction terms, group
## terms, response and a boolean global intercept indicating whether the
## intercept is included or not.
extract_terms_response <- function(formula) {
tt <- terms(formula)
terms_ <- attr(tt, "term.labels")
## when converting the terms_ to a list the first element is
## "list" itself, so we remove it
allterms_ <- as.list(attr(tt, "variables")[-1])
response <- attr(tt, "response")
global_intercept <- attr(tt, "intercept") == 1
if (response) {
response <- allterms_[response]
} else {
response <- NA
}
hier <- grepl("\\|", terms_)
int <- grepl(":", terms_)
group_terms <- terms_[hier]
interaction_terms <- terms_[int & !hier]
individual_terms <- terms_[!hier & !int]
additive_terms <- parse_additive_terms(individual_terms)
individual_terms <- setdiff(individual_terms, additive_terms)
response <- extract_response(response)
return(nlist(
individual_terms,
interaction_terms,
additive_terms,
group_terms,
response,
global_intercept
))
}
remove_duplicates <- function(formula) {
terms <- extract_terms_response(formula)
linear <- terms$individual_terms
additive <- unlist(regmatches(
terms$additive_terms,
gregexpr("(?<=\\().*?(?=\\))",
terms$additive_terms,
perl = TRUE
)
))
dups <- linear[!is.na(match(linear, additive))]
if (length(dups) > 0) {
update(formula, as.formula(paste0(
". ~ . - ",
paste(dups, collapse = " - ")
)))
}
else {
formula
}
}
## At any point inside projpred, the response can be a single object or instead
## it can represent multiple outputs. In this function we recover the response/s
## as a character vector so we can index the dataframe.
## @param response The response as retrieved from the formula object.
## @return the response as a character vector.
extract_response <- function(response) {
if (length(response) > 1) {
stop("Response must have a single element.")
}
response_name_ch <- as.character(response[[1]])
if ("cbind" %in% response_name_ch) {
## remove cbind
response_name_ch <- response_name_ch[-which(response_name_ch == "cbind")]
} else {
response_name_ch <- as.character(response)
}
return(response_name_ch)
}
## Parse additive terms from a list of individual terms. These may include
## individual smoothers s(x), interaction smoothers s(x, z), smooth intercepts
## s(factor, bs = "re"), group level independent smoothers s(x, by = g), or
## shared smoothers for low dimensional factors s(x, g, bs = "fs"), interaction
## group level smoothers with same shape for high dimensional factors t2(x, z,
## g, bs = c(., ., "re")), interaction group level independent smoothers te(x,
## z, by = g), population level interaction smoothers te(x, z, bs = c(., .)),
## s(x, z).
## @param terms list of terms to parse
## @return a vector of smooth terms
parse_additive_terms <- function(terms) {
excluded_terms <- c("te")
smooth_terms <- c("s", "t2")
excluded <- unlist(sapply(excluded_terms, function(et) {
grep(make_function_regexp(et), terms)
}))
if (sum(excluded) > 0) {
stop("te terms are not supported, please use t2 instead.")
}
smooth <- sapply(smooth_terms, function(et) {
terms[grep(make_function_regexp(et), terms)]
}) %>% unlist() %>% unname()
return(smooth)
}
make_function_regexp <- function(fname) {
return(paste0(fname, "\\(.+\\)"))
}
## Because the formula can imply multiple or single response, in this function
## we make sure that a formula has a single response. Then, in the case of
## multiple responses we split the formula.
## @param formula A formula specifying a model.
## @return a formula or a list of formulas with a single response each.
validate_response_formula <- function(formula) {
## if multi-response model, split the formula to have
## one formula per model.
## only use this for mixed effects models, for glms or gams
terms_ <- extract_terms_response(formula)
response <- terms_$response
if (length(response) > 1) {
return(lapply(response, function(r) {
update(formula, paste0(r, " ~ ."))
}))
} else {
return(formula)
}
}
## By combining different submodels we may arrive to a formula with repeated
## terms.
## This function gets rid of duplicated terms_.
## @param formula A formula specifying a model.
## @return a formula without duplicated structure.
flatten_formula <- function(formula) {
terms_ <- extract_terms_response(formula)
group_terms <- terms_$group_terms
interaction_terms <- terms_$interaction_terms
individual_terms <- terms_$individual_terms
additive_terms <- terms_$additive_terms
if (length(individual_terms) > 0 ||
length(interaction_terms) > 0 ||
length(group_terms) > 0 ||
length(additive_terms) > 0) {
full <- update(formula, paste(c(
". ~ ",
flatten_individual_terms(individual_terms),
flatten_additive_terms(additive_terms),
flatten_interaction_terms(interaction_terms),
flatten_group_terms(group_terms)
),
collapse = " + "
))
remove_duplicates(full)
} else {
formula
}
}
## Remove duplicated linear terms.
## @param terms A vector of linear terms as strings.
## @return a vector of unique linear individual terms.
flatten_individual_terms <- function(terms_) {
if (length(terms_) == 0) {
return(terms_)
}
return(unique(terms_))
}
## Remove duplicated linear interaction terms.
## @param terms A vector of linear interaction terms as strings.
## @return a vector of unique linear interaction terms.
flatten_interaction_terms <- function(terms_) {
if (length(terms_) == 0) {
return(terms_)
}
## TODO: do this right; a:b == b:a.
return(unique(terms_))
}
## Remove duplicated additive terms.
## @param terms A vector of additive terms as strings.
## @return a vector of unique linear interaction terms.
flatten_additive_terms <- function(terms_) {
if (length(terms_) == 0) {
return(terms_)
}
return(unique(terms_))
}
## Unifies group terms removing any duplicates.
## @param terms A vector of linear group terms as strings.
## @return a vector of unique group terms.
flatten_group_terms <- function(terms_) {
if (length(terms_) == 0) {
return(terms_)
}
split_terms_ <- strsplit(terms_, "[ ]*\\|([^\\|]*\\||)[ ]*")
group_names <- unique(unlist(lapply(split_terms_, function(t) t[2])))
group_terms <- setNames(
lapply(group_names, function(g) {
lapply(split_terms_, function(t) if (t[2] == g) t[1] else NA)
}),
group_names
)
group_terms <- lapply(group_terms, function(g) unlist(g[!is.na(g)]))
group_terms <- lapply(seq_along(group_terms), function(i) {
g <- group_terms[[i]]
g_name <- group_names[i]
partial_form <- as.formula(paste0(". ~ ", paste(g, collapse = " + ")))
t <- terms(partial_form)
t.labels <- attr(terms(partial_form), "term.labels")
if ("1" %in% g) {
attr(t, "intercept") <- 1
}
if (length(t.labels) < 1) {
t.labels <- c("1")
}
if (!attr(t, "intercept")) {
return(paste0(
"(0 + ", paste(t.labels, collapse = " + "), " | ",
g_name, ")"
))
} else {
return(paste0(
"(", paste(t.labels, collapse = " + "), " | ",
g_name, ")"
))
}
})
return(unlist(group_terms))
}
## Simplify and split a formula by breaking it into all possible submodels.
## @param formula A formula for a valid model.
## @param return_group_terms If TRUE, return group terms as well. Default TRUE.
## @param data The reference model data.
## @return a vector of all the minimal valid terms that make up for submodels.
split_formula <- function(formula, return_group_terms = TRUE, data = NULL) {
terms_ <- extract_terms_response(formula)
group_terms <- terms_$group_terms
interaction_terms <- terms_$interaction_terms
individual_terms <- terms_$individual_terms
additive_terms <- terms_$additive_terms
global_intercept <- terms_$global_intercept
additive <- unlist(regmatches(
additive_terms,
gregexpr("(?<=\\().*?(?=\\))",
terms_$additive_terms,
perl = TRUE
)
))
if (return_group_terms) {
## if there are group levels we should split that into basic components
group_split <- unlist(lapply(group_terms, split_group_term))
allterms_ <- c(
unlist(lapply(additive_terms, split_additive_term, data)),
unlist(lapply(interaction_terms, split_interaction_term))
)
group_replace <- regmatches(
group_split,
gregexpr("\\w+(?![^(]*\\))", group_split, perl = TRUE)
)
groups_to_replace <- group_split[unlist(lapply(
group_replace,
function(x) length(x) > 0
))]
to_replace <- group_split[match(group_replace, additive) %>%
(function(x) !is.na(x))]
not_replace <- setdiff(group_split, to_replace)
replacement <- gsub(
pattern = "(\\w+)(?![^(]*\\))", replacement = "s(\\1)",
to_replace, perl = TRUE
)
group_split <- c(not_replace, replacement)
nodups <- individual_terms[is.na(match(individual_terms, additive))]
allterms_ <- c(allterms_, group_split, nodups)
} else {
nodups <- individual_terms[!is.na(match(individual_terms, additive))]
allterms_ <- c(
nodups,
unlist(lapply(additive_terms, split_additive_term, data)),
unlist(lapply(interaction_terms, split_interaction_term))
)
}
## exclude the intercept if there is no intercept in the reference model
if (!global_intercept) {
allterms_nobias <- unlist(lapply(allterms_, function(term) {
paste0(term, " + 0")
}))
return(unique(allterms_nobias))
} else {
return(c("1", unique(allterms_)))
}
}
## Plugs the main effects to the interaction terms to consider jointly for
## projection.
## @param term An interaction term as a string.
## @return a minimally valid submodel for the interaction term including
## the overall effects.
split_interaction_term <- function(term) {
## strong heredity by default
terms_ <- unlist(strsplit(term, ":"))
individual_joint <- paste(terms_, collapse = " + ")
joint_term <- paste(c(individual_joint, term), collapse = " + ")
return(joint_term)
}
## Plugs the main effects to the smooth additive term if `by` argument is
## provided.
## @param term An additive term as a string.
## @param data The reference model data.
## @return a minimally valid submodel for the additive term.
split_additive_term <- function(term, data) {
out <- mgcv::interpret.gam(as.formula(paste("~", term)))
if (out$smooth.spec[[1]]$by == "NA") {
return(term)
}
main <- out$smooth.spec[[1]]$by
fac <- eval_rhs(as.formula(paste("~", main)), data = data)
if (!is.factor(fac)) {
return(term)
}
joint_term <- paste(c(main, term), collapse = " + ")
return(c(main, joint_term))
}
## Simplify a single group term by breaking it down in as many terms_
## as varying effects. It also explicitly adds or removes the varying intercept.
## @param term A group term as a string.
## @return a vector of all the minimally valid submodels for the group term
## including a single varying effect with and without varying intercept.
split_group_term <- function(term) {
## this expands whatever terms() did not expand
term <- gsub(
"\\)$", "",
gsub(
"^\\(", "",
flatten_group_terms(term)
)
)
## if ("\\-" %in% term)
## stop("Use of `-` is not supported, omit terms or use the ",
## "method update on the formula, or write `0 +` to remove ",
## "the intercept.")
chunks <- strsplit(term, "[ ]*\\|([^\\|]*\\||)[ ]*")[[1]]
lhs <- as.formula(paste0("~", chunks[1]))
tt <- extract_terms_response(lhs)
terms_ <- c(tt$individual_terms, tt$interaction_terms)
## split possible interaction terms
int_t <- grepl(":", terms_)
int_v <- terms_[int_t]
lin_v <- terms_[!int_t]
## don't add the intercept twice
terms_ <- setdiff(terms_, "1")
group <- chunks[2]
group_intercept <- tt$global_intercept
if (group_intercept) {
group_terms <- list(paste0("(1 | ", group, ")"))
group_terms <- c(
group_terms,
lapply(
lin_v,
function(v) {
paste0(v, " + ", "(", v, " | ", group, ")")
}
)
)
group_terms <- c(
group_terms,
lapply(
int_v,
function(v) {
paste0(
split_interaction_term(v), " + ",
"(", split_interaction_term(v), " | ", group, ")"
)
}
)
)
## add v + ( 1 | group)
group_terms <- c(
group_terms,
lapply(
lin_v,
function(v) {
paste0(v, " + ", "(1 | ", group, ")")
}
)
)
group_terms <- c(
group_terms,
lapply(
int_v,
function(v) {
paste0(
split_interaction_term(v), " + ",
"(1 | ", group, ")"
)
}
)
)
} else {
group_terms <- lapply(lin_v, function(v) {
paste0(v, " + ", "(0 + ", v, " | ", group, ")")
})
group_terms <- c(group_terms, lapply(int_v, function(v) {
paste0(split_interaction_term(v), " + ",
"(0 + ", split_interaction_term(v), " | ", group, ")")
}))
}
group_terms
}
## Checks whether a formula contains group terms or not.
## @param formula A formula for a valid model.
## @return TRUE if the formula contains group terms, FALSE otherwise.
formula_contains_group_terms <- function(formula) {
group_terms <- extract_terms_response(formula)$group_terms
return(length(group_terms) > 0)
}
## Checks whether a formula contains additive terms or not.
## @param formula A formula for a valid model.
## @return TRUE if the formula contains additive terms, FALSE otherwise.
formula_contains_additive_terms <- function(formula) {
additive_terms <- extract_terms_response(formula)$additive_terms
return(length(additive_terms) > 0)
}
## Utility to both subset the formula and update the data
## @param formula A formula for a valid model.
## @param terms_ A vector of terms to subset.
## @param data The original data frame for the full formula.
## @param y The response vector. Default NULL.
## @param split_formula If TRUE breaks the response down into single response
## formulas.
## Default FALSE. It only works if `y` represents a multi-output response.
## @return a list including the updated formula and data
subset_formula_and_data <- function(formula, terms_, data, y = NULL,
split_formula = FALSE) {
formula <- make_formula(terms_, formula = formula)
tt <- extract_terms_response(formula)
response_name <- tt$response
response_cols <- paste0(".", response_name)
response_ncol <- ncol(y) %||% 1
if (!is.null(ncol(y)) && ncol(y) > 1) {
response_cols <- paste0(response_cols, ".", seq_len(ncol(y)))
if (!split_formula) {
response_vector <- paste0("cbind(", paste(response_cols,
collapse = ", "
), ")")
formula <- update(formula, paste0(response_vector, " ~ ."))
} else {
formula <- lapply(response_cols, function(response) {
update(formula, paste0(response, " ~ ."))
})
}
} else {
formula <- update(formula, paste(response_cols, "~ ."))
}
## don't overwrite original y name
data <- data.frame(.z = y, data)
colnames(data)[seq_len(response_ncol)] <- response_cols
return(nlist(formula, data))
}
## Utility to just replace the response in the data frame
## @param formula A formula for a valid model.
## @param terms_ A vector of terms to subset.
## @param split_formula If TRUE breaks the response down into single response
## formulas.
## Default FALSE. It only works if `y` represents a multi-output response.
## @return a function that replaces the response in the data with arguments
## @param y The response vector. Default NULL.
## @param data The original data frame for the full formula.
get_replace_response <- function(formula, terms_, split_formula = FALSE) {
formula <- make_formula(terms_, formula = formula)
tt <- extract_terms_response(formula)
response_name <- tt$response
response_cols <- paste0(".", response_name)
replace_response <- function(y, data) {
response_ncol <- ncol(y) %||% 1
if (!is.null(ncol(y)) && ncol(y) > 1) {
response_cols <- paste0(response_cols, ".", seq_len(ncol(y)))
if (!split_formula) {
response_vector <- paste0("cbind(", paste(response_cols,
collapse = ", "
), ")")
}
}
## don't overwrite original y name
if (all(response_cols %in% colnames(data))) {
data[, response_cols] <- y
} else {
data <- data.frame(.z = y, data)
colnames(data)[seq_len(response_ncol)] <- response_cols
}
return(data)
}
return(replace_response)
}
## Subsets a formula by the given terms.
## @param terms_ A vector of terms to subset from the right hand side.
## @return A formula object with the collapsed terms.
make_formula <- function(terms_, formula = NULL) {
if (length(terms_) == 0) {
terms_ <- c("1")
}
if (is.null(formula)) {
return(as.formula(paste0(". ~ ", paste(terms_, collapse = " + "))))
}
return(update(formula, paste0(". ~ ", paste(terms_, collapse = " + "))))
}
## Utility to count the number of terms in a given formula.
## @param formula The right hand side of a formula for a valid model
## either as a formula object or as a string.
## @return the number of terms in the formula.
count_terms_in_formula <- function(formula) {
if (!inherits(formula, "formula")) {
formula <- as.formula(paste0("~ ", formula))
}
tt <- extract_terms_response(formula)
ind_interaction_terms <- length(tt$individual_terms) +
length(tt$interaction_terms) + length(tt$additive_terms)
group_terms <- sum(unlist(lapply(tt$group_terms, count_terms_in_group_term)))
ind_interaction_terms + group_terms + tt$global_intercept
}
## Utility to count the number of terms in a given group term.
## @param term A group term as a string.
## @return the number of terms in the group term.
count_terms_in_group_term <- function(term) {
term <- gsub("[\\(\\)]", "", flatten_group_terms(term))
chunks <- strsplit(term, "[ ]*\\|([^\\|]*\\||)[ ]*")[[1]]
lhs <- as.formula(paste0("~", chunks[1]))
tt <- extract_terms_response(lhs)
terms_ <- c(tt$individual_terms, tt$interaction_terms)
if ("0" %in% terms_) {
terms_ <- setdiff(terms_, "0")
} else if (!("1" %in% terms_)) {
terms_ <- c(terms_, "1")
}
return(length(terms_))
}
## Given a list of formulas, sort them by the number of terms in them.
## @param submodels A list of models' formulas.
## @return a sorted list of submodels by included terms.
sort_submodels_by_size <- function(submodels) {
size <- lapply(submodels, count_terms_in_formula)
df <- data.frame(submodels = as.character(submodels), size = unlist(size))
ordered <- df[order(df$size), ]
search_terms <- list()
for (size in unique(ordered$size)) {
search_terms[[size]] <-
as.character(ordered$submodels[ordered$size == size])
}
ord_list <- search_terms
## remove NA inside submodels
ord_list_nona <- lapply(ord_list, function(l) l[!is.na(l)])
## remove NA at the submodels level
ord_list_nona[!is.na(ord_list_nona)]
}
## Select next possible terms without surpassing a specific size
## @param chosen A list of currently chosen terms
## @param terms A list of all possible terms
## @param size Maximum allowed size
select_possible_terms_size <- function(chosen, terms, size) {
if (size < 1) {
stop("size must be at least 1")
}
valid_submodels <- lapply(terms, function(x) {
current <- count_terms_chosen(chosen)
increment <- size - current
if ((count_terms_chosen(c(chosen, x)) - current) == increment)
x
else
NA
})
valid_submodels <- unlist(valid_submodels[!is.na(valid_submodels)])
if (length(chosen) > 0) {
add_chosen <- paste0(paste(chosen, collapse = "+"), " + ")
remove_chosen <- paste0(" - ", paste(chosen, collapse = "-"))
} else {
add_chosen <- ""
remove_chosen <- ""
}
full_valid_submodels <- unique(unlist(lapply(valid_submodels, function(x)
to_character_rhs(flatten_formula(make_formula(
paste(add_chosen, x, remove_chosen)))))))
return(full_valid_submodels)
}
## Cast a right hand side formula to a character vector.
## @param rhs a right hand side formula of the type . ~ x + z + ...
## @return a character vector containing only the right hand side.
to_character_rhs <- function(rhs) {
chr <- as.character(rhs)
return(chr[length(chr)])
}
## Given a refmodel structure, count the number of terms included.
## @param formula The reference model's formula.
## @param list_of_terms Subset of terms from formula.
count_terms_chosen <- function(list_of_terms) {
if (length(list_of_terms) == 0) {
return(0)
}
formula <- make_formula(list_of_terms)
count_terms_in_formula(flatten_formula(formula))
}
## Utility that checks if the next submodel is redundant with the current one.
## @param formula The reference models' formula.
## @param current A list of terms included in the current submodel.
## @param new The new term to add to the submodel.
## @return TRUE if the new term results in a redundant model, FALSE otherwise.
is_next_submodel_redundant <- function(current, new) {
old_submodel <- current
new_submodel <- c(current, new)
if (count_terms_chosen(new_submodel) >
count_terms_chosen(old_submodel)) {
FALSE
} else {
TRUE
}
}
## Utility to remove redundant models to consider
## @param refmodel The reference model's formula.
## @param chosen A list of included terms at a given point of the search.
## @return a vector of incremental non redundant submodels for all the possible
## terms included.
reduce_models <- function(chosen) {
Reduce(
function(chosen, x) {
if (is_next_submodel_redundant(chosen, x)) {
chosen
} else {
c(chosen, x)
}
},
chosen
)
}
## Helper function to evaluate right hand side formulas in a context
## @param formula Formula to evaluate.
## @param data Data with which to evaluate.
## @return output from the evaluation
eval_rhs <- function(formula, data) {
eval(formula[[2]], data, environment(formula))
}
## Extract left hand side of a formula as a formula itself by removing the right
## hand side.
## @param x Formula
## @return updated formula with an intercept in the right hand side.
lhs <- function(x) {
x <- as.formula(x)
if (length(x) == 3L) update(x, . ~ 1) else NULL
}
# taken from brms
## validate formulas dedicated to response variables
## @param x coerced to a formula object
## @param empty_ok is an empty left-hand-side ok?
## @return a formula of the form <response> ~ 1
validate_resp_formula <- function(x, empty_ok = TRUE) {
out <- lhs(as.formula(x))
if (is.null(out)) {
if (empty_ok) {
out <- ~ 1
} else {
str_x <- formula2str(x, space = "trim")
stop2("Response variable is missing in formula ", str_x)
}
}
out <- gsub("\\|+[^~]*~", "~", formula2str(out))
out <- try(formula(out), silent = TRUE)
if (is(out, "try-error")) {
str_x <- formula2str(x, space = "trim")
stop2("Incorrect use of '|' on the left-hand side of ", str_x)
}
environment(out) <- environment(x)
out
}
# taken from brms
## convert a formula to a character string
## @param formula a model formula
## @param rm a vector of to elements indicating how many characters
## should be removed at the beginning and end of the string respectively
## @param space how should whitespaces be treated?
## @return a single character string or NULL
formula2str <- function(formula, rm = c(0, 0), space = c("rm", "trim")) {
if (is.null(formula)) {
return(NULL)
}
formula <- as.formula(formula)
space <- match.arg(space)
if (anyNA(rm[2])) rm[2] <- 0
x <- Reduce(paste, deparse(formula))
x <- gsub("[\t\r\n]+", "", x, perl = TRUE)
if (space == "trim") {
x <- gsub(" {1,}", " ", x, perl = TRUE)
} else {
x <- gsub(" ", "", x, perl = TRUE)
}
substr(x, 1 + rm[1], nchar(x) - rm[2])
}
## remove intercept from formula
## @param formula a model formula
## @return the updated formula without intercept
delete.intercept <- function(formula) {
return(update(formula, . ~ . - 1))
}
## construct contrasts.arg list argument for model.matrix based on the current
## model's formula.
## @param formula a formula object
## @param data model's data
## @return a named list with each factor and its contrasts
get_contrasts_arg_list <- function(formula, data) {
## extract model frame
## check categorical variables
## add contrasts for those
frame <- model.frame(delete.response(terms(formula)),
data = data
)
factors <- sapply(frame, is.factor)
contrasts_arg <- lapply(names(factors)[as.logical(factors)], function(v) {
stats::contrasts(frame[, v],
contrasts = FALSE
)
})
contrasts_arg <- setNames(contrasts_arg, names(factors)[as.logical(factors)])
return(contrasts_arg)
}
## collapse a list of terms including contrasts
## @param formula model's formula
## @param path list of terms possibly including contrasts
## @param data model's data
## @return the updated list of terms replacing the contrasts with the term name
collapse_contrasts_solution_path <- function(formula, path, data) {
tt <- terms(formula)
terms_ <- attr(tt, "term.labels")
for (term in terms_) {
current_form <- as.formula(paste("~ 0 +", term))
contrasts_arg <- get_contrasts_arg_list(
current_form,
data
)
if (length(contrasts_arg) == 0) {
next
}
x <- model.matrix(current_form, data, contrasts.arg = contrasts_arg)
path <- Reduce(function(current, pattern) {
pattern <- gsub("\\+", "\\\\+", pattern)
list(
current[[1]],
gsub(pattern, current[[1]], current[[2]])
)
},
x = colnames(x), init = list(term, path)
)
path <- unique(path[[length(path)]])
}
return(path)
}
split_formula_random_gamm4 <- function(formula) {
tt <- extract_terms_response(formula)
parens_group_terms <- unlist(lapply(tt$group_terms, function(t) {
paste0("(", t, ")")
}))
if (length(parens_group_terms) == 0) {
return(nlist(formula, random = NULL))
}
random <- as.formula(paste(
"~",
paste(parens_group_terms, collapse = " + ")
))
formula <- update(formula, make_formula(c(
tt$individual_terms, tt$interaction_terms,
tt$additive_terms
)))
return(nlist(formula, random))
}
# utility to recover the full gam + random formula from a stan_gamm4 model
formula.gamm4 <- function(x) {
formula <- x$formula
if (is.null(x$glmod)) {
return(formula)
}
ref <- extract_terms_response(x$glmod$formula)$group_terms
ref <- unlist(lapply(ref, function(t) {
paste0("(", t, ")")
}))
ref <- paste(ref, collapse = " + ")
updated <- update(formula, paste(". ~ . + ", ref))
form <- flatten_formula(update(
updated,
paste(
". ~",
paste(split_formula(updated), collapse = " + ")
)
))
return(form)
}
|