1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
# The functions in this file are used to compute the elastic net coefficient
# paths for a GLM. The main function is glm_elnet, other functions are
# auxiliaries. The L1-regularized projection path is computed by replacing the
# actual data y by the fit of the reference model when calling glm_elnet. Uses
# functions in glmfun.cpp.
standardization <- function(x, center = TRUE, scale = TRUE, weights = NULL) {
#
# return the shift and scaling for each variable based on data matrix x.
#
w <- weights / sum(weights)
if (center) {
mx <- colSums(x * w)
} else {
mx <- rep(0, ncol(x))
}
if (scale) {
sx <- apply(x, 2, weighted.sd, w)
} else {
sx <- rep(1, ncol(x))
}
return(list(shift = mx, scale = sx))
}
pseudo_data <- function(f, y, family, offset = rep(0, NROW(f)),
weights = rep(1.0, NROW(f)), obsvar = 0, wprev = NULL) {
#
# Returns locations z and weights w (inverse-variances) of the Gaussian
# pseudo-observations based on the linear approximation to the link function
# at f = eta = x*beta + beta0, as explained in McGullagh and Nelder (1989).
# Returns also the loss (= negative log likelihood) and its pointwise
# derivative w.r.t f at the current f.
#
mu <- family$linkinv(f + offset)
dmu_df <- family$mu.eta(f + offset)
z <- f + (y - mu) / dmu_df
if (family$family == "Student_t") {
# Student-t does not belong to the exponential family and thus it has its
# own way of computing the observation weights
if (is.null(wprev)) {
# initialization of the em-iteration; loop recursively until stable
# initial weights are found
wprev <- weights
while (TRUE) {
wtemp <- pseudo_data(f, y, family, offset = offset, weights = weights,
wprev = wprev, obsvar = obsvar)$wobs
if (max(abs(wtemp - wprev)) < 1e-6) {
break
}
wprev <- wtemp
}
}
# given the weights from the previous em-iteration, update s2 based on the
# previous weights and mu, and then compute new weights w
nu <- family$nu
s2 <- sum(wprev * (obsvar + (y - mu)^2)) / sum(weights)
wobs <- weights * (nu + 1) / (nu + 1 / s2 * (obsvar + (y - mu)^2))
loss <- 0.5 * sum(family$deviance(mu, y, weights, sqrt(s2)))
grad <- weights * (mu - y) / (nu * s2) * (nu + 1) /
(1 + (y - mu)^2 / (nu * s2)) * dmu_df
} else if (family$family %in% c("gaussian", "poisson", "binomial")) {
# exponential family distributions
wobs <- (weights * dmu_df^2) / family$variance(mu) # 2* because of deviance
loss <- 0.5 * sum(family$deviance(mu, y, weights))
grad <- -wobs * (z - f)
} else {
stop("Don't know how to compute quadratic approximation and gradients",
sprintf(" for family '%s'.", family$family))
}
return(nlist(z, wobs, loss, grad))
}
lambda_grid <- function(x, y, family, offset, weights, intercept, penalty,
obsvar = 0, alpha = 1.0, lambda_min_ratio = 1e-2,
nlam = 100) {
#
# Standard lambda sequence as described in Friedman et al. (2009), section
# 2.5. The grid will have nlam values, evenly spaced in the log-space between
# lambda_max and lambda_min. lambda_max is the smallest value for which all
# the regression coefficients will be zero (assuming alpha > 0, alpha = 0 will
# be initialized as if alpha = 0.01). Returns also the initial solution
# corresponding to the largest lambda (intercept and the unpenalized variables
# will be nonzero).
n <- dim(x)[1]
if (alpha == 0) {
# initialize ridge as if alpha = 0.01
alpha <- 0.01
}
# find the initial solution, that is, values for the intercept (if included)
# and those covariates that have penalty=0 (those which are always included,
# if such exist)
init <- glm_ridge(x[, penalty == 0, drop = FALSE], y,
family = family, lambda = 0, weights = weights,
offset = offset, obsvar = obsvar, intercept = intercept
)
f0 <- init$beta0 * rep(1, n)
if (length(init$beta) > 0) {
f0 <- f0 + as.vector(x[, penalty == 0, drop = FALSE] %*% init$beta)
}
obs <- pseudo_data(f0, y, family, offset, weights, obsvar = obsvar)
resid <- obs$z - f0 # residual from the initial solution
lambda_max_cand <- abs(t(x) %*% (resid * obs$wobs)) / (penalty * alpha)
lambda_max <- max(lambda_max_cand[is.finite(lambda_max_cand)])
## to prevent some variable from entering at the first step due to numerical
## inaccuracy
lambda_max <- 1.001 * lambda_max
lambda_min <- lambda_min_ratio * lambda_max
loglambda <- seq(log(lambda_min), log(lambda_max), len = nlam)
beta <- rep(0, ncol(x))
beta[penalty == 0] <- init$beta
return(list(lambda = rev(exp(loglambda)), beta = beta,
beta0 = init$beta0, w0 = obs$wobs))
}
glm_elnet <- function(x, y, family = gaussian(), nlambda = 100,
lambda_min_ratio = 1e-3, lambda = NULL, alpha = 1.0,
qa_updates_max = ifelse(family$family == "gaussian" &&
family$link == "identity",
1, 100),
pmax = dim(as.matrix(x))[2] + 1, pmax_strict = FALSE,
weights = NULL, offset = NULL, obsvar = 0,
intercept = TRUE, normalize = TRUE, penalty = NULL,
thresh = 1e-6) {
#
# Fits GLM with elastic net penalty on the regression coefficients.
# Computes the whole regularization path.
# Does not handle any dispersion parameters.
#
if (!.has_family_extras(family)) {
family <- extend_family(family)
}
# ensure x is in matrix form and fill in missing weights and offsets
x <- as.matrix(x)
if (is.null(weights)) {
weights <- rep(1.0, nrow(x))
}
if (is.null(offset)) {
offset <- rep(0.0, nrow(x))
}
if (is.null(penalty)) {
penalty <- rep(1.0, ncol(x))
} else if (length(penalty) != ncol(x)) {
stop(paste0("Incorrect length of penalty vector (should be ",
ncol(x), ")."))
}
# standardize the features (notice that the variables are centered only if
# intercept is used because otherwise the intercept would become nonzero
# unintentionally)
transf <- standardization(x, center = intercept, scale = normalize,
weights = weights)
penalty[transf$scale == 0] <- Inf # ignore variables with zero variance
transf$scale[transf$scale == 0] <- 1
x <- t((t(x) - transf$shift) / transf$scale)
# default lambda-sequence, including optimal start point
if (is.null(lambda)) {
temp <- lambda_grid(x, y, family, offset, weights, intercept, penalty,
alpha = alpha, obsvar = obsvar, nlam = nlambda,
lambda_min_ratio = lambda_min_ratio
)
lambda <- temp$lambda
w0 <- temp$w0
beta <- temp$beta
beta0 <- temp$beta0
} else {
beta <- rep(0, ncol(x))
beta0 <- 0
w0 <- weights
}
# call the C++-function that serves as the workhorse
pseudo_obs <- function(f, wprev) {
pseudo_data(f, y, family, offset = offset, weights = weights,
obsvar = obsvar, wprev = wprev)
}
out <- glm_elnet_c(
x, pseudo_obs, lambda, alpha, intercept, penalty,
thresh, qa_updates_max, pmax, pmax_strict, beta, beta0, w0
)
beta <- out[[1]]
beta0 <- as.vector(out[[2]])
# return the intercept and the coefficients on the original scale
beta <- beta / transf$scale
beta0 <- beta0 - colSums(transf$shift * beta)
return(nlist(
beta, beta0, w = out[[3]], lambda = lambda[seq_len(ncol(beta))],
npasses = out[[4]], updates_qa = as.vector(out[[5]]),
updates_as = as.vector(out[[6]])
))
}
glm_ridge <- function(x, y, family = gaussian(), lambda = 0, thresh = 1e-7,
qa_updates_max = NULL, weights = NULL, offset = NULL,
obsvar = 0, intercept = TRUE, penalty = NULL,
normalize = TRUE, la_approx = FALSE, beta_init = NULL,
beta0_init = NULL, ls_iter_max = 30) {
#
# Fits GLM with ridge penalty on the regression coefficients.
# Does not handle any dispersion parameters.
#
if (is.null(x)) {
x <- matrix(ncol = 0, nrow = length(y))
}
if (!.has_family_extras(family)) {
family <- extend_family(family)
}
if (family$family == "gaussian" && family$link == "identity") {
qa_updates_max <- 1
ls_iter_max <- 1
} else if (is.null(qa_updates_max)) {
qa_updates_max <- 100
}
if (is.null(weights)) {
weights <- rep(1.0, length(y))
}
if (is.null(offset)) {
offset <- rep(0.0, length(y))
}
if (is.null(beta0_init)) {
beta0_init <- 0
}
if (is.null(beta_init)) {
beta_init <- rep(0, NCOL(x))
}
if (intercept) {
beta_start <- c(beta0_init, beta_init)
} else {
beta_start <- beta_init
}
if (is.null(penalty)) {
penalty <- rep(1.0, NCOL(x))
}
if (length(x) == 0) {
if (intercept) {
# model with intercept only (fit like model with no intercept but with one
# constant predictor)
x <- matrix(rep(1, length(y)), ncol = 1)
w0 <- weights
pseudo_obs <- function(f, wprev)
pseudo_data(f, y, family, offset = offset, weights = weights,
obsvar = obsvar, wprev = wprev)
out <- glm_ridge_c(x, pseudo_obs, lambda, FALSE, 1, beta_start, w0,
thresh, qa_updates_max, ls_iter_max)
return(list(beta = matrix(integer(length = 0)),
beta0 = as.vector(out[[1]]), w = out[[3]], loss = out[[4]],
qa_updates = out[[5]]))
} else {
# null model with no predictors and no intercept
pseudo_obs <- function(f, wprev)
pseudo_data(f, y, family, offset = offset, weights = weights,
obsvar = obsvar, wprev = wprev)
pobs <- pseudo_obs(rep(0, length(y)), weights)
return(list(beta = matrix(integer(length = 0)), beta0 = 0, w = pobs$wobs,
qa_updates = 0))
}
}
# normal case, at least one predictor
x <- as.matrix(x) # ensure x is a matrix
# standardize the features (notice that the variables are centered only if
# intercept is used because otherwise the intercept would become nonzero
# unintentionally)
transf <- standardization(x, center = intercept, scale = normalize,
weights = weights)
penalty[transf$scale == 0] <- Inf # ignore variables with zero variance
transf$scale[transf$scale == 0] <- 1
x <- t((t(x) - transf$shift) / transf$scale)
# compute the solution
w0 <- weights
pseudo_obs <- function(f, wprev)
pseudo_data(f, y, family, offset = offset, weights = weights,
obsvar = obsvar, wprev = wprev)
out <- glm_ridge_c(x, pseudo_obs, lambda, intercept, penalty, beta_start, w0,
thresh, qa_updates_max, ls_iter_max)
beta <- out[[1]]
beta0 <- as.vector(out[[2]])
w <- out[[3]]
loss <- out[[4]]
# return the intercept and the coefficients on the original scale
beta_orig <- beta / transf$scale
beta0_orig <- beta0 - sum(transf$shift * beta_orig)
out <- nlist(beta = beta_orig, beta0 = beta0_orig, w,
qa_updates = out[[5]])
return(out)
}
glm_forward <- function(x, y, family = gaussian(), lambda = 0, thresh = 1e-7,
qa_updates_max = NULL, weights = NULL, offset = NULL,
obsvar = 0, intercept = TRUE, penalty = NULL,
normalize = TRUE, pmax = dim(as.matrix(x))[2]) {
#
# Runs forward stepwise regression. Does not handle any dispersion parameters.
#
if (is.null(x)) {
x <- matrix(ncol = 0, nrow = length(y))
}
if (!.has_family_extras(family)) {
family <- extend_family(family)
}
if (family$family == "gaussian" && family$link == "identity") {
qa_updates_max <- 1
} else if (is.null(qa_updates_max)) {
qa_updates_max <- 100
}
if (is.null(penalty)) {
penalty <- rep(1.0, ncol(x))
}
# compute the null model
out <- glm_ridge(NULL, y, family = family, lambda = lambda, thresh = thresh,
qa_updates_max = qa_updates_max, weights = weights,
offset = offset, obsvar = obsvar, intercept = intercept,
penalty = penalty
)
nullmodel <- list(beta = out$beta, beta0 = out$beta0,
varorder = integer(length = 0), w = out$w)
if (length(x) == 0) {
# return only the null model
nullmodel$varorder <- integer(length = 0)
return(nullmodel)
}
# normal case, at least one predictor
x <- as.matrix(x)
if (is.null(weights)) {
weights <- rep(1.0, nrow(x))
}
if (is.null(offset)) {
offset <- rep(0.0, nrow(x))
}
# standardize the features (notice that the variables are centered only if
# intercept is used because otherwise the intercept would become nonzero
# unintentionally)
transf <- standardization(x, center = intercept, scale = normalize,
weights = weights)
penalty[transf$scale == 0] <- Inf # ignore variables with zero variance
transf$scale[transf$scale == 0] <- 1
x <- t((t(x) - transf$shift) / transf$scale)
# forward search (use the C++ function)
w0 <- weights
pseudo_obs <- function(f, wprev)
pseudo_data(f, y, family, offset = offset, weights = weights,
obsvar = obsvar, wprev = wprev)
path <- glm_forward_c(x, pseudo_obs, lambda, intercept, penalty,
thresh, qa_updates_max, pmax, w0)
beta <- cbind(rep(0, ncol(x)), path[[1]])
beta0 <- c(nullmodel$beta0, as.vector(path[[2]]))
# return the intercept and the coefficients on the original scale
beta <- beta / transf$scale
beta0 <- beta0 - colSums(transf$shift * beta)
return(nlist(beta, beta0, varorder = as.vector(path[[3]]) + 1,
w = cbind(nullmodel$w, path[[4]])))
}
|