File: projpred.Rd

package info (click to toggle)
r-cran-projpred 2.0.2%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 740 kB
  • sloc: cpp: 355; sh: 14; makefile: 2
file content (54 lines) | stat: -rw-r--r-- 2,159 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/projpred-package.R
\docType{package}
\name{projpred}
\alias{projpred}
\title{Projection predictive feature selection}
\description{
Description

\pkg{projpred} is an R package to perform projection predictive variable
  (feature) selection for generalized linear models, generalized linear
  multilevel models and generalized additive multilevel models. The package
  is aimed to be compatible with \pkg{rstanarm} but also other reference
  models can be used (see function \code{\link{init_refmodel}}).

Currently, the supported models (family objects in R) include Gaussian,
  Binomial and Poisson families, but more will be implemented later. See the
  \href{https://mc-stan.org/projpred/articles/quickstart.html}{quickstart-vignette}
  and
  \href{https://mc-stan.org/projpred/articles/quickstart_glmm.html}{quickstart-glmm-vignette}
  for examples.
}
\section{Functions}{


\describe{
 \item{\link{varsel}, \link{cv_varsel}, \link{init_refmodel},
  \link{suggest_size}}{ Perform and cross-validate the variable selection.
  \link{init_refmodel} can be used to initialize a reference model other than
  \pkg{rstanarm}-fit.} \item{\link{project}}{ Get the projected posteriors of
  the reduced models.} \item{\link{proj_predict}, \link{proj_linpred}}{ Make
  predictions with reduced number of features.} \item{\link{plot},
  \link{summary}}{ Visualize and get some key statistics about the variable
  selection.}
}
}

\section{References}{


Dupuis, J. A. and Robert, C. P. (2003). Variable selection in qualitative
  models via an entropic explanatory power. \emph{Journal of Statistical
  Planning and Inference}, 111(1-2):77–94.

Goutis, C. and Robert, C. P. (1998). Model choice in generalised linear
  models: a Bayesian approach via Kullback–Leibler projections.
  \emph{Biometrika}, 85(1):29–37.

Juho Piironen and Aki Vehtari (2017). Comparison of Bayesian predictive
  methods for model selection. \emph{Statistics and Computing},
  27(3):711-735. doi:10.1007/s11222-016-9649-y.
  (\href{https://link.springer.com/article/10.1007/s11222-016-9649-y}{Online}).
}