File: extend_family.R

package info (click to toggle)
r-cran-projpred 2.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,180 kB
  • sloc: cpp: 296; sh: 14; makefile: 5
file content (327 lines) | stat: -rw-r--r-- 11,380 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Family-specific helper functions
#
# `extend_family(family)` returns a `family` object augmented with auxiliary
# functions that are needed for computing KL-divergence, log predictive density,
# dispersion projection, etc.
#
# Missing: Quasi-families are not implemented. If dis_gamma is the correct shape
# parameter for projected Gamma regression, everything should be OK for gamma.

#' Extend a family
#'
#' This function adds some internally required elements to an object of class
#' `family` (see, e.g., [family()]). It is called internally by
#' [init_refmodel()], so you will rarely need to call it yourself.
#'
#' @param family An object of class `family`.
#'
#' @return The `family` object extended in the way needed by \pkg{projpred}.
#'
#' @export
extend_family <- function(family) {
  if (.has_family_extras(family)) {
    # If the family was already extended using this function, then return as-is:
    return(family)
  }
  extend_family_specific <- paste0("extend_family_", tolower(family$family))
  if (!exists(extend_family_specific, mode = "function")) {
    stop("Family '", family$family, "' is not supported by projpred.")
  }
  extend_family_specific <- get(extend_family_specific, mode = "function")
  family <- extend_family_specific(family)
  family$is_extended <- TRUE
  return(family)
}

extend_family_binomial <- function(family) {
  # Helper function for calculating the log PMF of the binomial distribution,
  # but (i) modified to be non-zero at `x` not contained in the support and (ii)
  # "reduced" in the sense of lacking the (additive) part
  # `log(choose(size, size * x))`:
  dbinom_log_reduced <- function(x, size, prob) {
    size * (x * log(prob) + (1 - x) * log(1 - prob))
  }

  ce_binom <- function(pref, data, psub) {
    ce_sums <- -colSums(
      dbinom_log_reduced(x = pref$mu, size = data$weights, prob = psub$mu)
    )
    return(ce_sums / sum(data$weights))
  }
  dis_na <- function(pref, psub, wobs = 1) {
    rep(NA, ncol(pref$mu))
  }
  predvar_na <- function(mu, dis, wsample = 1) {
    rep(NA, NROW(mu))
  }
  ll_binom <- function(mu, dis, y, weights = 1) {
    y <- as.matrix(y)
    dbinom(y, weights, mu, log = TRUE)
  }
  dev_binom <- function(mu, y, weights = 1, dis = NULL) {
    if (NCOL(y) < NCOL(mu)) {
      y <- matrix(y, nrow = length(y), ncol = NCOL(mu))
    }
    -2 * dbinom_log_reduced(x = y, size = weights, prob = mu)
  }
  ppd_binom <- function(mu, dis, weights = 1) {
    rbinom(length(mu), weights, mu)
  }
  initialize_binom <- expression({
    if (NCOL(y) == 1) {
      if (is.factor(y)) {
        y <- y != levels(y)[1L]
      }
      n <- rep.int(1, nobs)
      y[weights == 0] <- 0
      if (any(y < 0 | y > 1)) {
        stop("y values must be 0 <= y <= 1")
      }
      mustart <- (weights * y + 0.5) / (weights + 1)
      m <- weights * y
      if ("binomial" == "binomial" && any(abs(m - round(m)) >
                                          0.001)) {
        ### Deactivated because in general, this will be the case in 'projpred':
        # warning(gettextf("non-integer #successes in a %s glm!",
        #                  "binomial"), domain = NA)
        ###
      }
    }
    else if (NCOL(y) == 2) {
      if ("binomial" == "binomial" && any(abs(y - round(y)) >
                                          0.001)) {
        warning(gettextf("non-integer counts in a %s glm!",
                         "binomial"), domain = NA)
      }
      n <- (y1 <- y[, 1L]) + y[, 2L]
      y <- y1 / n
      if (any(n0 <- n == 0)) {
        y[n0] <- 0
      }
      weights <- weights * n
      mustart <- (n * y + 0.5) / (n + 1)
    } else {
      stop(gettextf(paste("for the '%s' family, y must be a vector of 0 and",
                          "1's\nor a 2 column matrix where col 1 is no.",
                          "successes and col 2 is no. failures"),
                    "binomial"), domain = NA)
    }
  })

  family$initialize <- initialize_binom
  family$ce <- ce_binom
  family$dis_fun <- dis_na
  family$predvar <- predvar_na
  family$ll_fun <- ll_binom
  family$deviance <- dev_binom
  family$ppd <- ppd_binom

  return(family)
}

extend_family_poisson <- function(family) {
  # Helper function for calculating the log PMF of the Poisson distribution,
  # but (i) modified to be non-zero at `x` not contained in the support and (ii)
  # "reduced" in the sense of lacking the (additive) part
  # `- wobs * log(factorial(x))`:
  dpois_log_reduced <- function(x, lamb, wobs) {
    wobs * (x * log(lamb) - lamb)
  }

  ce_poiss <- function(pref, data, psub) {
    ce_sums <- -colSums(
      dpois_log_reduced(x = pref$mu, lamb = psub$mu, wobs = data$weights)
    )
    return(ce_sums / sum(data$weights))
  }
  dis_na <- function(pref, psub, wobs = 1) {
    rep(NA, ncol(pref$mu))
  }
  predvar_na <- function(mu, dis, wsample = 1) {
    rep(NA, NROW(mu))
  }
  ll_poiss <- function(mu, dis, y, weights = 1) {
    y <- as.matrix(y)
    weights * dpois(y, mu, log = TRUE)
  }
  dev_poiss <- function(mu, y, weights = 1, dis = NULL) {
    if (NCOL(y) < NCOL(mu)) {
      y <- matrix(y, nrow = length(y), ncol = NCOL(mu))
    }
    -2 * dpois_log_reduced(x = y, lamb = mu, wobs = weights)
  }
  ppd_poiss <- function(mu, dis, weights = 1) {
    rpois(length(mu), mu)
  }

  family$ce <- ce_poiss
  family$dis_fun <- dis_na
  family$predvar <- predvar_na
  family$ll_fun <- ll_poiss
  family$deviance <- dev_poiss
  family$ppd <- ppd_poiss

  return(family)
}

extend_family_gaussian <- function(family) {
  # ce_gauss() does not give the actual cross-entropy (not even the one which
  # would result from dropping terms which would cancel out when calculating the
  # KL divergence) but a reasonable surrogate. This additional approximation was
  # already made back when this used to be the KL divergence, not the
  # cross-entropy.
  ce_gauss <- function(pref, data, psub) {
    ce_sums <- colSums(data$weights * (-2 * pref$mu * psub$mu + psub$mu^2))
    return(ce_sums / sum(data$weights))
  }
  dis_gauss <- function(pref, psub, wobs = 1) {
    sqrt(colSums(wobs / sum(wobs) * (pref$var + (pref$mu - psub$mu)^2)))
  }
  predvar_gauss <- function(mu, dis, wsample = 1) {
    wsample <- wsample / sum(wsample)
    mu_mean <- mu %*% wsample
    mu_var <- mu^2 %*% wsample - mu_mean^2
    as.vector(sum(wsample * dis^2) + mu_var)
  }
  ll_gauss <- function(mu, dis, y, weights = 1) {
    y <- as.matrix(y)
    dis <- matrix(rep(dis, each = length(y)), ncol = NCOL(mu))
    weights * dnorm(y, mu, dis, log = TRUE)
  }
  dev_gauss <- function(mu, y, weights = 1, dis = NULL) {
    if (is.null(dis)) {
      dis <- 1
    } else {
      dis <- matrix(rep(dis, each = length(y)), ncol = NCOL(mu))
    }
    if (NCOL(y) < NCOL(mu)) {
      y <- matrix(y, nrow = length(y), ncol = NCOL(mu))
    }
    -2 * weights * (-0.5 / dis^2 * (y - mu)^2 - log(dis))
  }
  ppd_gauss <- function(mu, dis, weights = 1) {
    rnorm(length(mu), mu, dis)
  }

  family$ce <- ce_gauss
  family$dis_fun <- dis_gauss
  family$predvar <- predvar_gauss
  family$ll_fun <- ll_gauss
  family$deviance <- dev_gauss
  family$ppd <- ppd_gauss

  return(family)
}

extend_family_gamma <- function(family) {
  ce_gamma <- function(pref, data, psub) {
    stop("Cross-entropy for the Gamma() family not implemented yet.")
    ### TODO (Gamma()): This commented code stems from a time when this was
    ### still the actual KL divergence and not the (possibly reduced)
    ### cross-entropy ("possibly reduced" means: possibly reduced to only those
    ### terms which would not cancel out when calculating the KL divergence):
    ## mean(data$weights*(
    ##   p_sub$dis*(log(pref$dis)-log(p_sub$dis)+log(psub$mu)-log(pref$mu)) +
    ##     digamma(pref$dis)*(pref$dis - p_sub$dis) - lgamma(pref$dis) +
    ##     lgamma(p_sub$dis) + pref$mu*p_sub$dis/p_sub$mu - pref$dis))
    ###
  }
  dis_gamma <- function(pref, psub, wobs = 1) {
    ## TODO (Gamma()), IMPLEMENT THIS
    stop("Projection of dispersion parameter not yet implemented for family",
         " Gamma.")
    ## mean(wobs*((pref$mu - p_sub$mu)/
    ##                      family$mu.eta(family$linkfun(p_sub$mu))^2))
  }
  predvar_gamma <- function(mu, dis, wsample = 1) {
    stop("Family Gamma not implemented yet.")
  }
  ll_gamma <- function(mu, dis, y, weights = 1) {
    y <- as.matrix(y)
    dis <- matrix(rep(dis, each = length(y)), ncol = NCOL(mu))
    weights * dgamma(y, dis, dis / matrix(mu), log = TRUE)
  }
  dev_gamma <- function(mu, dis, y, weights = 1) {
    stop("Loss function not implemented for Gamma-family yet.")
    ## dis <- matrix(rep(dis, each=length(y)), ncol=NCOL(mu))
    ## weights*dgamma(y, dis, dis/matrix(mu), log= TRUE)
  }
  ppd_gamma <- function(mu, dis, weights = 1) {
    rgamma(length(mu), dis, dis / mu)
  }

  family$ce <- ce_gamma
  family$dis_fun <- dis_gamma
  family$predvar <- predvar_gamma
  family$ll_fun <- ll_gamma
  family$deviance <- dev_gamma
  family$ppd <- ppd_gamma

  return(family)
}

extend_family_student_t <- function(family) {
  ce_student_t <- function(pref, data, psub) {
    stop("Cross-entropy for the Student_t() family not implemented yet.")
    ### TODO (Student_t()): This commented code stems from a time when this was
    ### still the actual KL divergence and not the (possibly reduced)
    ### cross-entropy ("possibly reduced" means: possibly reduced to only those
    ### terms which would not cancel out when calculating the KL divergence):
    # log(psub$dis)
    ##- 0.5*log(pref$var) # FIX THIS, NOT CORRECT
    ###
  }
  dis_student_t <- function(pref, psub, wobs = 1) {
    s2 <- colSums(psub$w / sum(wobs) *
                    (pref$var + (pref$mu - psub$mu)^2)) # CHECK THIS
    sqrt(s2)
    ## stop('Projection of dispersion not yet implemented for student-t')
  }
  predvar_student_t <- function(mu, dis, wsample = 1) {
    wsample <- wsample / sum(wsample)
    mu_mean <- mu %*% wsample
    mu_var <- mu^2 %*% wsample - mu_mean^2
    as.vector(family$nu / (family$nu - 2) * sum(wsample * dis^2) + mu_var)
  }
  ll_student_t <- function(mu, dis, y, weights = 1) {
    y <- as.matrix(y)
    dis <- matrix(rep(dis, each = length(y)), ncol = NCOL(mu))
    weights * (dt((y - mu) / dis, family$nu, log = TRUE) - log(dis))
  }
  dev_student_t <- function(mu, y, weights = 1, dis = NULL) {
    if (is.null(dis)) {
      dis <- 1
    } else {
      dis <- matrix(rep(dis, each = length(y)), ncol = NCOL(mu))
    }
    if (NCOL(y) < NCOL(mu)) {
      y <- matrix(y, nrow = length(y), ncol = NCOL(mu))
    }
    (-2 * weights * (-0.5 * (family$nu + 1)
                     * log(1 + 1 / family$nu * ((y - mu) / dis)^2) - log(dis)))
  }
  ppd_student_t <- function(mu, dis, weights = 1) {
    rt(length(mu), family$nu) * dis + mu
  }

  family$ce <- ce_student_t
  family$dis_fun <- dis_student_t
  family$predvar <- predvar_student_t
  family$ll_fun <- ll_student_t
  family$deviance <- dev_student_t
  family$ppd <- ppd_student_t

  return(family)
}

.has_dispersion <- function(family) {
  # a function for checking whether the family has a dispersion parameter
  family$family %in% c("gaussian", "Student_t", "Gamma")
}

# A function for checking whether a `family` object has the required extra
# functions, that is, whether it has already been extended (typically by a call
# to extend_family()):
.has_family_extras <- function(family) {
  return(isTRUE(family$is_extended))
}