File: misc.R

package info (click to toggle)
r-cran-projpred 2.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,180 kB
  • sloc: cpp: 296; sh: 14; makefile: 5
file content (473 lines) | stat: -rw-r--r-- 16,176 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
.onAttach <- function(...) {
  ver <- utils::packageVersion("projpred")
  msg <- paste0("This is projpred version ", ver, ".")
  packageStartupMessage(msg)
}

nms_d_test <- function() {
  c("type", "data", "offset", "weights", "y")
}

weighted.sd <- function(x, w, na.rm = FALSE) {
  if (na.rm) {
    ind <- !is.na(w) & !is.na(x)
    n <- sum(ind)
  } else {
    n <- length(x)
    ind <- rep(TRUE, n)
  }
  w <- w / sum(w[ind])
  m <- sum(x[ind] * w[ind])
  sqrt(n / (n - 1) * sum(w[ind] * (x[ind] - m)^2))
}

log_weighted_mean_exp <- function(x, w) {
  log_sum_exp(x + log(w))
}

log_sum_exp <- function(x) {
  max_x <- max(x)
  max_x + log(sum(exp(x - max_x)))
}

auc <- function(x) {
  resp <- x[, 1]
  pred <- x[, 2]
  wcv <- x[, 3]
  n <- nrow(x)
  ord <- order(pred, decreasing = TRUE)
  resp <- resp[ord]
  pred <- pred[ord]
  wcv <- wcv[ord]
  w0 <- w1 <- wcv
  stopifnot(all(resp %in% c(0, 1)))
  w0[resp == 1] <- 0 # for calculating the false positive rate (fpr)
  w1[resp == 0] <- 0 # for calculating the true positive rate (tpr)
  cum_w0 <- cumsum(w0)
  cum_w1 <- cumsum(w1)

  ## ignore tied predicted probabilities, keeping only the rightmost one
  rightmost.prob <- c(diff(pred) != 0, TRUE)
  fpr <- c(0, cum_w0[rightmost.prob]) / cum_w0[n]
  tpr <- c(0, cum_w1[rightmost.prob]) / cum_w1[n]
  delta_fpr <- c(diff(fpr), 0)
  delta_tpr <- c(diff(tpr), 0)

  ## sum the area of the rectangles that fall completely below the ROC curve
  ## plus half the area of the rectangles that are cut in two by the curve
  return(sum(delta_fpr * tpr) + sum(delta_fpr * delta_tpr) / 2)
}

# Bootstrap an arbitrary quantity `fun` that takes the sample `x` as the first
# input. Other arguments of `fun` can be passed by `...`. Example:
# `boostrap(x, mean)`.
bootstrap <- function(x, fun = mean, B = 2000,
                      seed = sample.int(.Machine$integer.max, 1), ...) {
  # Set seed, but ensure the old RNG state is restored on exit:
  if (exists(".Random.seed", envir = .GlobalEnv)) {
    rng_state_old <- get(".Random.seed", envir = .GlobalEnv)
    on.exit(assign(".Random.seed", rng_state_old, envir = .GlobalEnv))
  }
  if (!is.na(seed)) set.seed(seed)

  seq_x <- seq_len(NROW(x))
  is_vector <- NCOL(x) == 1
  bsstat <- rep(NA, B)
  for (i in 1:B) {
    bsind <- sample(seq_x, replace = TRUE)
    bsstat[i] <- fun(if (is_vector) x[bsind] else x[bsind, ], ...)
  }
  return(bsstat)
}

# From `?is.integer` (slightly modified):
.is.wholenumber <- function(x) {
  abs(x - round(x)) < .Machine$double.eps^0.5
}

.validate_num_folds <- function(k, n) {
  if (!is.numeric(k) || length(k) != 1 || !.is.wholenumber(k)) {
    stop("Number of folds must be a single integer value.")
  }
  if (k < 2) {
    stop("Number of folds must be at least 2.")
  }
  if (k > n) {
    stop("Number of folds cannot exceed n.")
  }
}

.validate_vsel_object_stats <- function(object, stats) {
  if (!inherits(object, c("vsel"))) {
    stop("The object is not a variable selection object. Run variable ",
         "selection first")
  }

  recognized_stats <- c("elpd", "mlpd", "mse", "rmse", "acc", "pctcorr", "auc")
  binomial_only_stats <- c("acc", "pctcorr", "auc")

  if (is.null(stats)) {
    stop("Statistic specified as NULL.")
  }
  for (stat in stats) {
    if (!(stat %in% recognized_stats)) {
      stop(sprintf("Statistic '%s' not recognized.", stat))
    }
    if (stat %in% binomial_only_stats &&
        object$refmodel$family$family != "binomial") {
      stop("Statistic '", stat, "' available only for the binomial family.")
    }
  }
  return(invisible(TRUE))
}

.validate_baseline <- function(refmodel, baseline, deltas) {
  stopifnot(!is.null(baseline))
  if (!(baseline %in% c("ref", "best"))) {
    stop("Argument 'baseline' must be either 'ref' or 'best'.")
  }
  if (baseline == "ref" && deltas == TRUE && inherits(refmodel, "datafit")) {
    # no reference model (or the results missing for some other reason),
    # so cannot compute differences between the reference model and submodels
    stop("Cannot use deltas = TRUE and baseline = 'ref' when there is no ",
         "reference model.")
  }
  return(baseline)
}

# A function for retrieving `y` and the corresponding observation weights
# `weights` in their "standard" forms:
#   * If `NCOL(y) == 2`: `y` is the first column and `weights` the second.
#   * If `NCOL(y) == 1`: `weights` is basically unchanged (unless of length zero
#     in which case it is replaced by a vector of ones). For a binomial family,
#     if `is.factor(y)`, `y` is transformed into a zero-one vector (i.e., with
#     values in the set {0, 1}).
.get_standard_y <- function(y, weights, fam) {
  if (NCOL(y) == 1) {
    if (length(weights) > 0) {
      weights <- unname(weights)
    } else {
      weights <- rep(1, length(y))
    }
    if (fam$family == "binomial") {
      if (is.factor(y)) {
        if (nlevels(y) > 2) {
          stop("y cannot contain more than two classes if specified as factor.")
        }
        y <- as.vector(y, mode = "integer") - 1L # zero-one vector
      }
    } else {
      if (is.factor(y)) {
        stop("y cannot be a factor for models other than the binomial model.")
      }
    }
  } else if (NCOL(y) == 2) {
    if (fam$family != "binomial") {
      stop("For non-binomial families, a two-column response is not allowed.")
    }
    weights <- unname(y[, 1] + y[, 2])
    y <- unname(y[, 1])
  } else {
    stop("The response is not allowed to have more than two columns.")
  }
  return(nlist(y, weights))
}

# Create the "reference distribution", i.e., reduce the number of posterior
# draws from the reference model by clustering, thinning, or subsampling them
#
# @param refmodel An object of class `refmodel`.
# @param nclusters The desired number of clusters of draws. If
#   `!is.null(nclusters)`, then clustering is used and `ndraws` is ignored.
# @param ndraws The desired number of draws. If `!is.null(nclusters)`, then
#   clustering is used and `ndraws` is ignored.
# @param thinning A single logical value indicating whether in the case where
#   `ndraws` is used, the reference model's draws should be thinned or
#   subsampled (without replacement).
#
# @return Let \eqn{y} denote the response (vector), \eqn{N} the number of
#   observations, and \eqn{S_{\mathrm{prj}}}{S_prj} the number of projected
#   draws (= either `nclusters` or `ndraws`, depending on which one is used).
#   Then the return value is a list with elements:
#
#   * `mu`: An \eqn{N \times S_{\mathrm{prj}}}{N x S_prj} matrix of expected
#   values for \eqn{y} for each draw/cluster.
#   * `var`: An \eqn{N \times S_{\mathrm{prj}}}{N x S_prj} matrix of predictive
#   variances for \eqn{y} for each draw/cluster which are needed for projecting
#   the dispersion parameter (the predictive variances are NA for those families
#   that do not have a dispersion parameter).
#   * `dis`: A vector of length \eqn{S_{\mathrm{prj}}}{S_prj} containing the
#   reference model's dispersion parameter value for each draw/cluster (NA for
#   those families that do not have a dispersion parameter).
#   * `weights`: A vector of length \eqn{S_{\mathrm{prj}}}{S_prj} containing the
#   weights for the draws/clusters.
#   * `cl`: Cluster assignment for each posterior draw, that is, a vector that
#   has length equal to the number of posterior draws and each value is an
#   integer between 1 and \eqn{S_{\mathrm{prj}}}{S_prj}.
.get_refdist <- function(refmodel, ndraws = NULL, nclusters = NULL,
                         thinning = TRUE,
                         throw_mssg_ndraws = getOption("projpred.mssg_ndraws",
                                                       TRUE)) {
  # Number of draws in the reference model:
  S <- NCOL(refmodel$mu)

  if (!is.null(nclusters)) {
    # use clustering (ignore ndraws argument)
    nclusters <- min(S, nclusters)
    if (nclusters == S) {
      # number of clusters equal to the number of samples, so return the samples
      return(.get_refdist(refmodel, ndraws = nclusters,
                          throw_mssg_ndraws = FALSE))
    } else if (nclusters == 1) {
      # special case, only one cluster
      p_ref <- .get_p_clust(family = refmodel$family, mu = refmodel$mu,
                            eta = refmodel$eta, dis = refmodel$dis,
                            wobs = refmodel$wobs, cl = rep(1, S),
                            offs = refmodel$offset)
    } else {
      # several clusters
      p_ref <- .get_p_clust(family = refmodel$family, mu = refmodel$mu,
                            eta = refmodel$eta, dis = refmodel$dis,
                            wobs = refmodel$wobs, nclusters = nclusters,
                            offs = refmodel$offset)
    }
  } else {
    ndraws <- min(S, ndraws)
    if (ndraws <= 20 && isTRUE(throw_mssg_ndraws)) {
      message("The number of draws to project is quite small (<= 20). In such ",
              "cases, it is usually better to use clustering.")
    }
    if (thinning) {
      s_ind <- round(seq(from = 1, to = S, length.out = ndraws))
    } else {
      s_ind <- draws_subsample(S = S, ndraws = ndraws)
    }
    cl <- rep(NA, S)
    cl[s_ind] <- 1:ndraws
    mu_offs <- refmodel$mu
    if (!all(refmodel$offset == 0)) {
      mu_offs <- refmodel$family$linkinv(
        refmodel$family$linkfun(mu_offs) + refmodel$offset
      )
    }
    predvar <- do.call(cbind, lapply(s_ind, function(j) {
      refmodel$family$predvar(mu_offs[, j, drop = FALSE], refmodel$dis[j])
    }))
    p_ref <- list(
      mu = refmodel$mu[, s_ind, drop = FALSE], var = predvar,
      dis = refmodel$dis[s_ind], weights = rep(1 / ndraws, ndraws), cl = cl,
      clust_used = FALSE
    )
  }

  return(p_ref)
}

# Function for clustering the parameter draws:
.get_p_clust <- function(family, mu, eta, dis, nclusters = 10,
                         wobs = rep(1, dim(mu)[1]),
                         wsample = rep(1, dim(mu)[2]), cl = NULL,
                         offs = rep(0, dim(mu)[1])) {
  # cluster the samples in the latent space if no clustering provided
  if (is.null(cl)) {
    # Note: A seed is not set here because this function is not exported and has
    # a calling stack at the beginning of which a seed is set.

    out <- kmeans(t(eta), nclusters, iter.max = 50)
    cl <- out$cluster # cluster indices for each sample
  } else if (typeof(cl) == "list") {
    # old clustering solution provided, so fetch the cluster indices
    if (is.null(cl$cluster)) {
      stop("argument cl must be a vector of cluster indices or a clustering ",
           "object returned by k-means.")
    }
    cl <- cl$cluster
  }

  # (re)compute the cluster centers, because they may be different from the ones
  # returned by kmeans if the samples have differing weights
  # Number of clusters (assumes labeling "1, ..., nclusters"):
  nclusters <- max(cl, na.rm = TRUE)
  # Cluster centers:
  centers <- matrix(0, nrow = nclusters, ncol = dim(mu)[1])
  # Cluster weights:
  wcluster <- rep(0, nclusters)
  # Dispersion parameter draws aggregated within each cluster:
  dis_agg <- rep(NA_real_, nclusters)
  # Predictive variances:
  predvar <- matrix(nrow = dim(mu)[1], ncol = nclusters)
  eps <- 1e-10
  # Predictions incorporating offsets (needed for `predvar`):
  mu_offs <- mu
  if (!all(offs == 0)) {
    mu_offs <- family$linkinv(family$linkfun(mu_offs) + offs)
  }
  for (j in 1:nclusters) {
    ind <- which(cl == j)
    # Compute normalized weights within the j-th cluster; `1 - eps` is for
    # numerical stability:
    ws <- wsample[ind] / sum(wsample[ind]) * (1 - eps)

    # Center of the j-th cluster:
    centers[j, ] <- mu[, ind, drop = FALSE] %*% ws
    # Unnormalized weight for the j-th cluster:
    wcluster[j] <- sum(wsample[ind])
    # Aggregated dispersion parameter for the j-th cluster:
    dis_agg[j] <- crossprod(dis[ind], ws)
    # Predictive variance for the j-th cluster:
    predvar[, j] <- family$predvar(mu_offs[, ind, drop = FALSE], dis[ind], ws)
  }
  wcluster <- wcluster / sum(wcluster)

  # combine the results
  p <- list(
    mu = unname(t(centers)),
    var = predvar,
    dis = dis_agg,
    weights = wcluster,
    cl = cl,
    clust_used = TRUE
  )
  return(p)
}

draws_subsample <- function(S, ndraws) {
  # Note: A seed is not set here because this function is not exported and has a
  # calling stack at the beginning of which a seed is set.

  return(sample.int(S, size = ndraws))
}

.is_proj_list <- function(proj) {
  # Better use a formal class `proj_list`, but for now, use this workaround:
  is.list(proj) && length(proj) && all(sapply(proj, inherits, "projection"))
}

.unlist_proj <- function(p) {
  if (length(p) == 1) p[[1]] else p
}

## create a named list using object names
nlist <- function(...) {
  m <- match.call()
  dots <- list(...)
  no_names <- is.null(names(dots))
  has_name <- if (no_names) FALSE else nzchar(names(dots))
  if (all(has_name)) {
    return(dots)
  }
  nms <- as.character(m)[-1]
  if (no_names) {
    names(dots) <- nms
  } else {
    names(dots)[!has_name] <- nms[!has_name]
  }
  dots
}

# The `%||%` special binary (infix) operator from brms (equivalent to the
# `%ORifNULL%` operator from rstanarm):
`%||%` <- function(x, y) {
  if (is.null(x)) x <- y
  x
}

#' Execute a function call
#'
#' Execute a function call similar to [do.call()], but without deparsing
#' function arguments.
#'
#' @param what Either a function or a non-empty character string naming the
#'   function to be called.
#' @param args A `list` of arguments to the function call. The [`names`]
#'   attribute of `args` gives the argument names.
#' @param pkg Optional name of the package in which to search for the function
#'   if `what` is a character string.
#'
#' @return The result of the (evaluated) function call.
#'
#' @keywords internal
#' @export
do_call <- function(what, args, pkg = NULL) {
  call <- ""
  if (length(args)) {
    if (!is.list(args)) {
      stop2("'args' must be a list.")
    }
    fun_args <- names(args)
    if (is.null(fun_args)) {
      fun_args <- rep("", length(args))
    } else {
      nzc <- nzchar(fun_args)
      fun_args[nzc] <- paste0("`", fun_args[nzc], "` = ")
    }
    names(args) <- paste0(".x", seq_along(args))
    call <- paste0(fun_args, names(args), collapse = ",")
  } else {
    args <- list()
  }
  if (is.function(what)) {
    args$.fun <- what
    what <- ".fun"
  } else {
    what <- paste0("`", as_one_character(what), "`")
    if (!is.null(pkg)) {
      what <- paste0(as_one_character(pkg), "::", what)
    }
  }
  call <- paste0(what, "(", call, ")")
  eval2(call, envir = args, enclos = parent.frame())
}

# like 'eval' but parses characters before evaluation
eval2 <- function(expr, envir = parent.frame(), ...) {
  if (is.character(expr)) {
    expr <- parse(text = expr)
  }
  eval(expr, envir, ...)
}

# coerce `x` to a single character string
as_one_character <- function(x, allow_na = FALSE) {
  s <- substitute(x)
  x <- as.character(x)
  if (length(x) != 1L || anyNA(x) && !allow_na) {
    s <- deparse_combine(s, max_char = 100L)
    stop2("Cannot coerce '", s, "' to a single character value.")
  }
  x
}

stop2 <- function(...) {
  stop(..., call. = FALSE)
}

# combine deparse lines into one string
deparse_combine <- function(x, max_char = NULL) {
  out <- paste0(deparse(x), collapse = "")
  if (isTRUE(max_char > 0)) {
    out <- substr(out, 1L, max_char)
  }
  out
}

#' @importFrom magrittr %>%
#' @export
magrittr::`%>%`

# `R CMD check` throws a note when using <package>:::<function>() (for accessing
# <function> which is not exported by its <package>). Of course, usage of
# non-exported functions should be avoided, but sometimes there's no way around
# that. Thus, with the following helper operator, it is possible to redefine
# such functions here in projpred:
`%:::%` <- function(pkg, fun) {
  # Note: `utils::getFromNamespace(fun, pkg)` could probably be used, too (but
  # its documentation is unclear about the inheritance from parent
  # environments).
  get(fun, envir = asNamespace(pkg), inherits = FALSE)
}

# Helper function to combine separate `list`s into a single `list`:
rbind2list <- function(x) {
  as.list(do.call(rbind, lapply(x, as.data.frame)))
}