File: projpred.R

package info (click to toggle)
r-cran-projpred 2.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,180 kB
  • sloc: cpp: 296; sh: 14; makefile: 5
file content (169 lines) | stat: -rw-r--r-- 6,012 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
params <-
list(EVAL = TRUE)

## ---- SETTINGS-knitr, include=FALSE-------------------------------------------
stopifnot(require(knitr))
knitr::opts_chunk$set(
  dev = "png",
  dpi = 150,
  fig.asp = 0.618,
  fig.width = 5,
  out.width = "60%",
  fig.align = "center",
  comment = NA,
  eval = if (isTRUE(exists("params"))) params$EVAL else FALSE,
  message = FALSE,
  warning = FALSE
)

## -----------------------------------------------------------------------------
data("df_gaussian", package = "projpred")
dat_gauss <- data.frame(y = df_gaussian$y, df_gaussian$x)

## -----------------------------------------------------------------------------
library(rstanarm)

## -----------------------------------------------------------------------------
# Number of regression coefficients:
( D <- sum(grepl("^X", names(dat_gauss))) )

## -----------------------------------------------------------------------------
# Prior guess for the number of relevant (i.e., non-zero) regression
# coefficients:
p0 <- 5
# Number of observations:
N <- nrow(dat_gauss)
# Hyperprior scale for tau, the global shrinkage parameter (note that for the
# Gaussian family, 'rstanarm' will automatically scale this by the residual
# standard deviation):
tau0 <- p0 / (D - p0) * 1 / sqrt(N)

## -----------------------------------------------------------------------------
# Set this manually if desired:
ncores <- parallel::detectCores(logical = FALSE)
### Only for technical reasons in this vignette (you can omit this when running
### the code yourself):
ncores <- min(ncores, 2L)
###
options(mc.cores = ncores)
refm_fit <- stan_glm(
  y ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10 + X11 + X12 + X13 + X14 +
    X15 + X16 + X17 + X18 + X19 + X20,
  family = gaussian(),
  data = dat_gauss,
  prior = hs(global_scale = tau0),
  ### Only for the sake of speed (not recommended in general):
  chains = 2, iter = 500,
  ###
  seed = 2052109, QR = TRUE, refresh = 0
)

## -----------------------------------------------------------------------------
library(projpred)

## ---- results='hide'----------------------------------------------------------
cvvs <- cv_varsel(
  refm_fit,
  ### Only for the sake of speed (not recommended in general):
  validate_search = FALSE,
  nclusters_pred = 20,
  ###
  nterms_max = 9,
  seed = 411183
)

## ---- fig.asp=1.5 * 0.618-----------------------------------------------------
plot(cvvs, stats = c("elpd", "rmse"), deltas = TRUE, seed = 54548)

## -----------------------------------------------------------------------------
modsize_decided <- 6

## -----------------------------------------------------------------------------
suggest_size(cvvs)

## -----------------------------------------------------------------------------
cvvs
### Alternative modifying the number of printed decimal places:
# print(cvvs, digits = 2)
### 

## -----------------------------------------------------------------------------
( soltrms <- solution_terms(cvvs) )

## -----------------------------------------------------------------------------
( soltrms_final <- head(soltrms, modsize_decided) )

## -----------------------------------------------------------------------------
prj <- project(refm_fit, solution_terms = soltrms_final)

## -----------------------------------------------------------------------------
prj_mat <- as.matrix(prj)

## -----------------------------------------------------------------------------
library(posterior)
prj_drws <- as_draws_matrix(prj_mat)
# In the following call, as.data.frame() is used only because pkgdown
# versions > 1.6.1 don't print the tibble correctly.
as.data.frame(summarize_draws(
  prj_drws,
  "median", "mad", function(x) quantile(x, probs = c(0.025, 0.975))
))

## -----------------------------------------------------------------------------
library(bayesplot)
bayesplot_theme_set(ggplot2::theme_bw())
mcmc_intervals(prj_mat) +
  ggplot2::coord_cartesian(xlim = c(-1.5, 1.6))

## -----------------------------------------------------------------------------
refm_mat <- as.matrix(refm_fit)
mcmc_intervals(refm_mat, pars = colnames(prj_mat)) +
  ggplot2::coord_cartesian(xlim = c(-1.5, 1.6))

## -----------------------------------------------------------------------------
( dat_gauss_new <- setNames(
  as.data.frame(replicate(length(soltrms_final), c(-1, 0, 1))),
  soltrms_final
) )

## -----------------------------------------------------------------------------
prj_linpred <- proj_linpred(prj, newdata = dat_gauss_new, integrated = TRUE)
cbind(dat_gauss_new, linpred = as.vector(prj_linpred$pred))

## -----------------------------------------------------------------------------
prj_predict <- proj_predict(prj, .seed = 762805)
# Using the 'bayesplot' package:
ppc_dens_overlay(y = dat_gauss$y, yrep = prj_predict, alpha = 0.9, bw = "SJ")

## ---- eval=FALSE--------------------------------------------------------------
#  data("VerbAgg", package = "lme4")
#  refm_fit <- stan_glmer(
#    r2 ~ btype + situ + mode + (btype + situ + mode | id),
#    family = binomial(),
#    data = VerbAgg,
#    seed = 82616169, QR = TRUE, refresh = 0
#  )

## ---- eval=FALSE--------------------------------------------------------------
#  data("lasrosas.corn", package = "agridat")
#  # Convert `year` to a `factor` (this could also be solved by using
#  # `factor(year)` in the formula, but we avoid that here to put more emphasis on
#  # the demonstration of the smooth term):
#  lasrosas.corn$year <- as.factor(lasrosas.corn$year)
#  refm_fit <- stan_gamm4(
#    yield ~ year + topo + t2(nitro, bv),
#    family = gaussian(),
#    data = lasrosas.corn,
#    seed = 4919670, QR = TRUE, refresh = 0
#  )

## ---- eval=FALSE--------------------------------------------------------------
#  data("gumpertz.pepper", package = "agridat")
#  refm_fit <- stan_gamm4(
#    disease ~ field + leaf + s(water),
#    random = ~ (1 | row) + (1 | quadrat),
#    family = binomial(),
#    data = gumpertz.pepper,
#    seed = 14209013, QR = TRUE, refresh = 0
#  )