1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
|
# Block-wise propensity clustering.
# Basic input should be an adjacency matrix, a logical indicating whether L2 or Poisson updates should be
# used, maximum block size, and most likely some pre-clustering arguments.
# The function may run something like hierarchical clustering coupled with dynamic tree cut to determine
# initial clusters. Then determine pairwise cluster dissimilarities and cluster the clusters. Then merge the
# clusters into blocks of size not exceeding the given maximum size.
# The advantage of this is relative simplicity and the fact that I get the blocks and clustering within each
# block in one step. The disadvantage is that the pre-clustering may not work all that well.
# The function requires WGCNA but the requirement may be removed.
#============================================================================================
#
# Helper functions
#
#============================================================================================
.spaste = function(...) { paste(..., sep="") }
.checkAdjMat = function (adjMat, min = 0, max = 1)
{
dim = dim(adjMat)
if (is.null(dim) || length(dim) != 2)
stop("adjacency is not two-dimensional")
if (!is.numeric(adjMat))
stop("adjacency is not numeric")
if (dim[1] != dim[2])
stop("adjacency is not square")
if (max(abs(adjMat - t(adjMat)), na.rm = TRUE) > 1e-12)
stop("adjacency is not symmetric")
if (min(adjMat, na.rm = TRUE) < min || max(adjMat, na.rm = TRUE) > max)
stop("some entries are not between", min, "and", max)
}
.translateUsingTable = function(x, translationTable)
{
translationTable[ match(x, translationTable[, 1]), 2]
}
.translationTable = function(from, to)
{
if (length(from)!= length(to)) stop("Length of 'from' and 'to' must be the same.");
tab = as.matrix(table(from, to));
if (ncol(tab)!=nrow(tab)) {
printFlush("Error in .translationTable: table is not 1-to-1.")
if (ncol(tab)<10 && nrow(tab) < 10) print(tab);
stop();
}
nonZeros.row = rowSums( tab!=0 )
nonZeros.col = colSums( tab!=0 )
if (any(c(nonZeros.row, nonZeros.col) != 1)) {
printFlush("Error in .translationTable: table is not 1-to-1.")
if (ncol(tab)<10 && nrow(tab) < 10) print(tab);
stop();
}
unique.from = sort(unique(from));
tt = cbind(unique.from, to [ match(unique.from, from)] );
colnames(tt) = c("from", "to");
tt;
}
#=====================================================================================================
#
# .minWhichMin: min() and which.min() of columns in a matrix
#
#=====================================================================================================
# This is a wrapper around my C-level function.
.minWhichMin = function(x)
{
x = as.matrix(x);
nc= ncol(x);
nr = nrow(x);
min = rep(0, nc);
which = rep(0, nc);
whichmin = .C(.C_minWhichMin, as.double(x),
as.integer(nr), as.integer(nc),
as.double(min), as.double(which), NAOK = TRUE);
cbind( min = whichmin[[4]], which = whichmin[[5]] + 1);
}
#===================================================================================================
#
# .clusterDissimilarity
#
#===================================================================================================
.clusterDissimilarity = function(dissimilarity, labels, method = c("average", "complete", "single"),
unassignedLabel)
{
levels0 = sort(unique(labels))
levels = levels0 [levels0 != unassignedLabel]
nClusters = length(levels);
clusterDiss = matrix(0, nClusters, nClusters);
distFunctions = c("mean", "max", "min");
useFnc = match.fun(distFunctions[ match (match.arg(method), c("average", "complete", "single")) ]);
if (nClusters > 1)
{
for (c1 in 1:(nClusters-1)) for (c2 in (c1+1):nClusters)
clusterDiss[c1, c2] = clusterDiss[c2, c1] =
useFnc(dissimilarity[ labels==levels[c1], labels==levels[c2]], na.rm = TRUE);
}
clusterDiss;
}
#===================================================================================================
#
# .nodeClusterDissimilarity
#
#===================================================================================================
# To make it easier to use the result, the function returns clusters in rows and nodes in columns.
.nodeClusterDissimilarity = function(dissim, labels, levels,
method = c("average", "complete", "single"), unassignedLabel)
{
unassigned = labels == unassignedLabel
method = match.arg(method);
nClusters = length(levels);
nUnassigned = sum(unassigned);
ncd = matrix(0, nClusters, nUnassigned);
for (c in 1:nClusters)
{
if (method == "average") {
ncd[ c, ] = colMeans( dissim[labels==levels[c], unassigned ], na.rm = TRUE);
} else if (method == "complete") {
ncd[ c, ] = apply( dissim[labels==levels[c], unassigned ], 2, max, na.rm = TRUE);
} else
ncd[ c, ] = apply( dissim[labels==levels[c], unassigned ], 2, min, na.rm = TRUE);
}
ncd;
}
#===================================================================================================
#
# .mergeClustersIntoBlocks
#
#===================================================================================================
# .mergeClustersIntoBlocks: merge clusters into blocks. This code is adapted from WGCNA function
# projectiveKMeans. Assumes the labels are integers with no gaps starting from 1.
.mergeClustersIntoBlocks = function(dissim, labels, maxBlockSize,
method = c("average", "complete", "single"),
unassignedLabel)
{
distFunctions = c("mean", "max", "min");
useFnc = match.fun(distFunctions[ match (match.arg(method), c("average", "complete", "single")) ]);
clusterDiss = .clusterDissimilarity(dissim, labels, method = method, unassignedLabel = unassignedLabel);
diag(clusterDiss) = NA;
clusterSizes = table(labels[ labels != unassignedLabel ] );
nClusters = length(clusterSizes);
clusterNames = names(clusterSizes);
if (is.numeric(labels)) clusterNames = as.numeric(as.character(clusterNames));
small = (clusterSizes < maxBlockSize);
done = FALSE;
while (!done & (sum(small)>1) & nClusters > 1)
{
smallIndex = c(1:nClusters)[small]
nSmall = sum(small);
distOrder = order(as.vector(clusterDiss[smallIndex, smallIndex]))[
seq(from=2, to = nSmall * (nSmall-1), by=2)];
i = 1; canMerge = FALSE;
while (i <= length(distOrder) && (!canMerge))
{
col = as.integer( (distOrder[i]-1)/nSmall + 1);
whichJ = smallIndex[col];
whichI = smallIndex[distOrder[i] - (col-1) * nSmall];
canMerge = sum(clusterSizes[c(whichI, whichJ)]) < maxBlockSize;
i = i + 1;
}
if (canMerge)
{
labels[labels==clusterNames[whichJ]] = clusterNames[whichI];
clusterSizes[whichI] = sum(clusterSizes[c(whichI, whichJ)]);
nClusters = nClusters -1;
clusterSizes = clusterSizes[-whichJ];
clusterNames = clusterNames[-whichJ];
clusterDiss = clusterDiss[ -whichJ, -whichJ];
for (c in 1:nClusters) if (c!=whichI)
clusterDiss[whichI, c] = clusterDiss[c, whichI] =
useFnc(dissim[ labels==clusterNames[c], labels==clusterNames[whichI]], na.rm = TRUE)
small = (clusterSizes < maxBlockSize);
} else done = TRUE;
}
labels;
}
#===================================================================================================
#
# .assignToNearestCluster
#
#===================================================================================================
# Caution: if all labels equal unassignedLabel it will return the labels unchanged.
.assignToNearestCluster = function(dissim, labels, method, unassignedLabel)
{
levels0 = sort(unique(labels));
levels = levels0 [levels0 != unassignedLabel];
if (length(levels) > 0)
{
nodeClusterSimilarity = .nodeClusterDissimilarity(dissim, labels=labels, levels=levels, method=method,
unassignedLabel=unassignedLabel);
nearest = .minWhichMin(nodeClusterSimilarity);
labels[ labels == unassignedLabel ] = nearest[, "which"];
}
labels;
}
#===================================================================================================
#
# main user level function propensityClustering
#
#===================================================================================================
propensityClustering = function(adjacency,
decompositionType = c("CPBA", "Pure Propensity"),
objectiveFunction = c("Poisson", "L2norm"),
fastUpdates = TRUE,
blocks = NULL,
initialClusters = NULL,
nClusters = NULL,
maxBlockSize = if (fastUpdates) 5000 else 1000,
clustMethod = "average",
cutreeDynamicArgs = list(deepSplit = 2,
minClusterSize = 20, verbose = 0),
dropUnassigned = TRUE,
unassignedLabel = 0,
verbose = 2,
indent = 0
)
{
spaces = indentSpaces(indent);
.checkAdjMat(adjacency, min = 0, max = max(adjacency, na.rm = TRUE));
objectiveFunction = match.arg(objectiveFunction);
nAllNodes = nNodes = ncol(adjacency);
useNodes = rep(TRUE, nNodes);
decompositionType = match.arg(decompositionType);
if (decompositionType=="Pure Propensity")
{
# Run propensity decomposition on a single cluster that contains all nodes.
nClusters = 1;
initialClusters = rep(1, nNodes);
return( CPBADecomposition(adjacency, clustering = initialClusters,
objectiveFunction = objectiveFunction,
nClusters = nClusters) );
}
if (!is.null(nClusters))
{
# If the user supplies nClusters, use internal initialization.
useInternalInit = TRUE
# Check that the supplied nClusters makes sense.
if (!is.finite(nClusters)) stop("The number of clusters 'nClusters' must be finite.");
if (nClusters < 2) stop("If given, the number of clusters 'nClusters' must be at least 2.");
# The following is necessary so splitting into blocks does not leave out any objects.
dropUnassigned = FALSE
} else {
useInternalInit = FALSE;
}
# After this step the number of clusters is always non-null and is zero if it originally was NULL.
if (!is.null(initialClusters))
{
initialClusters = as.vector(initialClusters);
if (length(initialClusters)!=nNodes)
stop(.spaste("Length of 'initialClusters' must equal the number of nodes\n",
" (i.e., number of rows or columns of 'adjacency')."));
tree = NULL;
} else {
dissim = 1-adjacency;
# Cluster
tree = hclust(as.dist(dissim), method = clustMethod);
# Cut the tree
cutreeDynamicArgs$dendro = tree;
cutreeDynamicArgs$distM = dissim;
initialClusters = do.call(cutreeDynamic, cutreeDynamicArgs);
unassignedLabel = 0;
}
if (all(initialClusters==unassignedLabel))
stop(.spaste("All initial cluster labels are 'unassigned'.\n",
" Please supply a non-trivial initial clustering\n",
" or change the initial clustering arguments so hierarchical clustering\n",
" with Dynamic Tree Cut return clusters."));
if (!is.null(blocks))
{
blocks = as.vector(blocks);
if (length(blocks)!=nNodes)
stop(.spaste("Length of 'blocks' must equal the number of nodes\n",
" (i.e., number of rows or columns of 'adjacency')."));
}
if (dropUnassigned)
{
useNodes = initialClusters != unassignedLabel;
adjacency = adjacency[useNodes, useNodes];
initialClusters = initialClusters[useNodes];
if (!is.null(blocks))
blocks = blocks[useNodes];
nNodes = ncol(adjacency);
} else {
initialClusters = .assignToNearestCluster(1-adjacency, labels = initialClusters,
method = clustMethod, unassignedLabel = unassignedLabel);
}
# Note: past this point initialClusters cannot contain any unassigned labels.
if (is.null(blocks))
{
if (verbose > 0) printFlush(.spaste(spaces, " ..determining blocks.."));
blocks = .mergeClustersIntoBlocks(1-adjacency, labels = initialClusters, maxBlockSize = maxBlockSize,
method = clustMethod, unassignedLabel = unassignedLabel);
}
# This code assumes there are no 0 labels among blocks.
blocks = as.numeric(as.factor(blocks));
nBlocks = length(unique(blocks));
blockNodes = list();
blockClusters = list();
blockLevels = sort(unique(blocks));
# Split given initial clusters by block for use below.
for (b in 1:nBlocks)
{
blockNodes1 = c(1:nNodes)[ blocks== blockLevels[b] ];
blockNodes[[b]] = blockNodes1;
blockClusters[[b]] = initialClusters[ blockNodes1 ];
}
propensityClusters = initialClusters;
# Run propensity clustering on each block separately
propClusts = list();
if (verbose > 0)
printFlush(.spaste(spaces, " ..running propensityClustering in each block with non-trivial clustering.."));
for (b in 1:nBlocks)
{
blockNodes1 = blockNodes[[b]];
if (length(unique(initialClusters[ blockNodes1 ])) > 1 | useInternalInit)
{
if (verbose > 1) printFlush(.spaste(spaces, " ..running propensityClustering in block ", b));
initClust = initialClusters[ blockNodes1 ]
initClust.norm = as.numeric(factor(initClust));
norm2orig = .translationTable(initClust.norm, initClust);
if (useInternalInit)
{
ncl1 = nClusters;
} else {
ncl1 = length(unique(initClust.norm));
}
pc1 = .propensityClustering.internal( adjacency[ blockNodes1, blockNodes1 ],
initialClusters = initClust.norm,
l2bool = objectiveFunction=="L2norm",
nClusters = ncl1,
initbool = useInternalInit, fastUpdates = fastUpdates);
if (useInternalInit)
{
# Each block has nClusters clusters, so this calculation is easy
pc1$Clustering = pc1$Clustering + (b-1) * nClusters;
} else {
pc1$Clustering = .translateUsingTable(pc1$Clustering, norm2orig);
}
propensityClusters [ blockNodes1 ] = pc1$Clustering;
propClusts[[b]] = pc1;
} else {
propClusts[[b]] = NA;
propensityClusters [ blockNodes1 ] = initialClusters [ blockNodes1 ];
}
}
# Run one final propensity decomposition on the full clustering.
if (verbose > 0) printFlush(.spaste(spaces, " ..running final propensity decomposition.."));
propensity = rep(0, nAllNodes);
propensityClusters.norm = as.numeric(as.factor(propensityClusters));
pd = CPBADecomposition(adjacency, propensityClusters.norm,
objectiveFunction = objectiveFunction,
nClusters = NULL);
propensity[useNodes] = pd$Propensity;
if (verbose > 0) printFlush(.spaste(spaces, " ..done (propensityClustering)."));
blocks.all = initialClusters.all = propClusters.all = rep(0, nAllNodes);
propClusters.all[useNodes] = propensityClusters;
blocks.all[useNodes] = blocks;
initialClusters.all[useNodes] = initialClusters;
# Return value
c(list(Clustering = propClusters.all, Propensity = propensity, NodeWasConsidered = useNodes),
pd, list(Blocks = blocks.all, InitialClusters = initialClusters.all,
InitialTree = tree));
}
|