File: quick_start.Rmd

package info (click to toggle)
r-cran-prophet 1.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 736 kB
  • sloc: sh: 13; makefile: 2
file content (58 lines) | stat: -rw-r--r-- 1,867 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
title: "Quick Start Guide to Using Prophet"
author: "Sean J. Taylor and Ben Letham"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
vignette: >
  %\VignetteIndexEntry{Quick Start Guide to Using Prophet}
  %\VignetteEngine{knitr::rmarkdown}
  \usepackage[utf8]{inputenc}
---

```{r, echo = FALSE, message = FALSE}
knitr::opts_chunk$set(collapse = T, comment = "#>")
options(tibble.print_min = 4L, tibble.print_max = 4L)
library(prophet)
library(dplyr)
```

This document provides a very brief introduction to the Prophet API. For a detailed guide on using Prophet, please visit the main site at [https://facebook.github.io/prophet/](https://facebook.github.io/prophet/).

Prophet uses the normal model fitting API.  We provide a `prophet` function that performs fitting and returns a model object.  You can then call `predict` and `plot` on this model object.

First we read in the data and create the outcome variable.

```{r, results= "hide"}
library(readr)
df <- read_csv('../tests/testthat/data.csv')
```

We call the `prophet` function to fit the model.  The first argument is the historical dataframe.  Additional arguments control how Prophet fits the data.

```{r}
m <- prophet(df)
```
We need to construct a dataframe for prediction.  The `make_future_dataframe` function takes the model object and a number of periods to forecast:

```{r}
future <- make_future_dataframe(m, periods = 365)
head(future)
```
As with most modeling procedures in R, we use the generic `predict` function to get our forecast:

```{r}
forecast <- predict(m, future)
head(forecast)
```

You can use the generic `plot` function to plot the forecast, but you must also pass the model in to be plotted:

```{r}
plot(m, forecast)
```

You can plot the components of the forecast using the `prophet_plot_components` function:

```{r}
prophet_plot_components(m, forecast)
```