1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
R version 4.2.0 (2022-04-22) -- "Vigorous Calisthenics"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> #################################
> ## Test for dist calls
> ##################################
>
> library(proxy)
Attaching package: 'proxy'
The following objects are masked from 'package:stats':
as.dist, dist
The following object is masked from 'package:base':
as.matrix
>
> set.seed(20140107)
>
> ## get all measures
> proxies = pr_DB$get_entry_names()
>
> ## remove special cases
> proxies = setdiff(proxies, c("Mahalanobis", "Minkowski", "Stiles", "Levenshtein", "fJaccard"))
>
> ## create test data
> x = matrix(1:100, 10)
>
> ## test function: checks if dist(x) == dist(x,x) for all measures,
> ## and if diag(dist(x, x)) == diag(x, x, pairwise = TRUE)
> prtest <- function(...) {
+ CD <- dist(x, x, ...)
+ all(as.matrix(dist(x, ...)) == CD) &&
+ all(diag(CD) == dist(x, x, pairwise = TRUE, ...))
+ }
>
> ## loop over all measures (except special cases)
> for (i in proxies)
+ {cat(i); prtest(i); cat(": OK.\n")}
Jaccard: OK.
Kulczynski1: OK.
Kulczynski2: OK.
Mountford: OK.
Fager: OK.
Russel: OK.
simple matching: OK.
Hamman: OK.
Faith: OK.
Tanimoto: OK.
Dice: OK.
Phi: OK.
Michael: OK.
Mozley: OK.
Yule: OK.
Yule2: OK.
Ochiai: OK.
Simpson: OK.
Braun-Blanquet: OK.
cosine: OK.
angular: OK.
eJaccard: OK.
eDice: OK.
correlation: OK.
Chi-squared: OK.
Phi-squared: OK.
Tschuprow: OK.
Cramer: OK.
Pearson: OK.
Gower: OK.
Euclidean: OK.
Bhjattacharyya: OK.
Manhattan: OK.
supremum: OK.
Canberra: OK.
Wave: OK.
divergence: OK.
Kullback: OK.
Bray: OK.
Soergel: OK.
Podani: OK.
Chord: OK.
Geodesic: OK.
Whittaker: OK.
Hellinger: OK.
>
> ## Minkowski
> for (j in c(0.5, 1, 2, 3, Inf))
+ {cat("Minkowski: p =", j); prtest("Minkowski", p = j); cat(": OK.\n")}
Minkowski: p = 0.5: OK.
Minkowski: p = 1: OK.
Minkowski: p = 2: OK.
Minkowski: p = 3: OK.
Minkowski: p = Inf: OK.
>
> ## Mahalanobis (need non-singular matrix)
> x = as.matrix(iris[1:50,-5])
> prtest("Mahalanobis")
[1] TRUE
>
> ## fJaccard (needs values in unit interval)
> x = as.matrix(1:100/100, 10)
> prtest("fJaccard")
[1] TRUE
>
> ## produce binary matrix
> x = matrix(rbinom(100,1,0.7), 10)
>
> ## Stiles (gives a lot of warnings due to log)
> tmp = dist(x, "Stiles")
There were 27 warnings (use warnings() to see them)
> tmp = dist(x, x, "Stiles")
There were 50 or more warnings (use warnings() to see the first 50)
>
> ## try again (almost) all measures, this time with binary data to check
> ## conversions
> for (i in proxies)
+ {cat(i); prtest(i); cat(": OK.\n")}
Jaccard: OK.
Kulczynski1: OK.
Kulczynski2: OK.
Mountford: OK.
Fager: OK.
Russel: OK.
simple matching: OK.
Hamman: OK.
Faith: OK.
Tanimoto: OK.
Dice: OK.
Phi: OK.
Michael: OK.
Mozley: OK.
Yule: OK.
Yule2: OK.
Ochiai: OK.
Simpson: OK.
Braun-Blanquet: OK.
cosine: OK.
angular: OK.
eJaccard: OK.
eDice: OK.
correlation: OK.
Chi-squared: OK.
Phi-squared: OK.
Tschuprow: OK.
Cramer: OK.
Pearson: OK.
Gower: OK.
Euclidean: OK.
Bhjattacharyya: OK.
Manhattan: OK.
supremum: OK.
Canberra: OK.
Wave: OK.
divergence: OK.
Kullback: OK.
Bray: OK.
Soergel: OK.
Podani: OK.
Chord: OK.
Geodesic: OK.
Whittaker: OK.
Hellinger: OK.
> ## Minkowski
> for (j in c(0.5, 1, 2, 3, Inf))
+ {cat("Minkowski: p =", j); prtest("Minkowski", p = j); cat(": OK.\n")}
Minkowski: p = 0.5: OK.
Minkowski: p = 1: OK.
Minkowski: p = 2: OK.
Minkowski: p = 3: OK.
Minkowski: p = Inf: OK.
>
> ## Levenshtein distance
> s <- c("A", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog")
> all(as.matrix(dist(s, "Levenshtein")) == dist(s, s, "Levenshtein"))
[1] TRUE
>
> ## Test auto-conversion
> x = iris[,-5]
> prtest()
[1] TRUE
>
>
>
> proc.time()
user system elapsed
0.585 0.012 0.591
|