1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
\name{itempar}
\alias{itempar}
\alias{itempar.btmodel}
\alias{itempar.raschmodel}
\alias{itempar.rsmodel}
\alias{itempar.pcmodel}
\alias{itempar.plmodel}
\alias{itempar.gpcmodel}
\alias{itempar.raschtree}
\alias{itempar.bttree}
\alias{coef.itempar}
\alias{print.itempar}
\alias{vcov.itempar}
\title{Extract Item Parameters of Item Response Models}
\description{
A class and generic function for representing and extracting the item
parameters of a given item response model.
}
\usage{
itempar(object, \dots)
\method{itempar}{raschmodel}(object, ref = NULL, alias = TRUE, vcov = TRUE, \dots)
\method{itempar}{rsmodel}(object, ref = NULL, alias = TRUE, vcov = TRUE, \dots)
\method{itempar}{pcmodel}(object, ref = NULL, alias = TRUE, vcov = TRUE, \dots)
\method{itempar}{plmodel}(object, ref = NULL, alias = TRUE, vcov = TRUE, \dots)
\method{itempar}{gpcmodel}(object, ref = NULL, alias = TRUE, vcov = TRUE, \dots)
\method{itempar}{btmodel}(object, ref = NULL, alias = TRUE, vcov = TRUE, log = FALSE, \dots)
}
\arguments{
\item{object}{a fitted model or tree object whose item parameters should be extracted.}
\item{ref}{a vector of labels or position indices of item parameters or a
contrast matrix which should be used as restriction/for normalization. If
\code{NULL} (the default) for all models except models estimated via MML,
all items are used (sum zero restriction). For models estimated via MML
(\code{plmodel}s and \code{gpcmodel}s), the parameters are by default
identified via the distributional parameters of the person parameters (mean
and variance of a normal distribution). Nevertheless, a restriction on the
interval scale can be applied.}
\item{alias}{logical. If \code{TRUE} (the default), the aliased parameter is
included in the return vector (and in the variance-covariance matrix if
\code{vcov} = TRUE). If \code{FALSE}, it is removed. If the restriction
given in \code{ref} depends on several parameters, the first parameter of
the restriction specified is (arbitrarily) chosen to be removed if
\code{alias} is \code{FALSE}.}
\item{vcov}{logical. If \code{TRUE} (the default), the (transformed)
variance-covariance matrix of the item parameters is attached as
attribute \code{vcov}. If \code{FALSE}, an \code{NA}-matrix is attached.}
\item{log}{logical. Whether to return the estimated model parameters
on the logit (\code{TRUE}) or preference scale (\code{FALSE}).}
\item{\dots}{further arguments which are currently not used.}
}
\details{
\code{itempar} is both, a class to represent item parameters of item
response models as well as a generic function. The generic function can be
used to extract the item parameters of a given item response model.
For Rasch models and n-parameter logistic models, \code{itempar} returns the
estimated item difficulty parameters \eqn{\hat{\beta}_{j}} under the
restriction specified in argument \code{ref}. For rating scale models,
\code{itempar} returns computed item location parameters \eqn{\hat{\beta}_{j}}
under the restriction specified in argument \code{ref}. These are computed
from the estimated item-specific parameters \eqn{\hat{\xi}_{j}} (who mark the
location of the first category of an item on the latent theta axis). For
partial credit models and generalized partial credit models, \code{itempar}
returns \sQuote{mean} absolute item threshold parameters, \eqn{\hat{\beta}_{j}
= \frac{1}{p_{j}} \sum_{k = 1}^{p_{j}}\hat{\delta}_{jk}}, i.e., a single
parameter per item is returned which results as the mean of the absolute item
threshold parameters \eqn{\hat{\delta}_{jk}} of this item. Based upon these
\sQuote{mean} absolute item threshold parameters \eqn{\hat{\beta}_{j}}, the
restriction specified in argument \code{ref} is applied. For all models, the
variance-covariance matrix of the returned item parameters is adjusted
according to the multivariate delta rule.
For objects of class \code{itempar}, several methods to standard generic
functions exist: \code{print}, \code{coef}, \code{vcov}. \code{coef} and
\code{vcov} can be used to extract the estimated calculated item parameters
and their variance-covariance matrix without additional attributes. Based on
this Wald tests or confidence intervals can be easily computed, e.g., via
\code{confint}.
Two-sample item-wise Wald tests for DIF in the item parameters can be
carried out using the function \code{\link{anchortest}}.
}
\value{
A named vector with item parameters of class \code{itempar} and additional
attributes \code{model} (the model name), \code{ref} (the items or parameters
used as restriction/for normalization), \code{alias} (either \code{FALSE} or a
named character vector with the removed aliased parameter, and \code{vcov}
(the adjusted covariance matrix of the estimates if \code{vcov = TRUE} or an
\code{NA}-matrix otherwise).
}
\seealso{\code{\link{personpar}}, \code{\link{threshpar}},
\code{\link{discrpar}}, \code{\link{guesspar}}, \code{\link{upperpar}}}
\examples{
o <- options(digits = 4)
## load verbal aggression data
data("VerbalAggression", package = "psychotools")
## fit a Rasch model to dichotomized verbal aggression data
raschmod <- raschmodel(VerbalAggression$resp2)
## extract item parameters with sum zero or use last two items as anchor
ip1 <- itempar(raschmod)
ip2a <- itempar(raschmod, ref = 23:24) # with position indices
ip2b <- itempar(raschmod, ref = c("S4WantShout", "S4DoShout")) # with item label
ip1
ip2a
all.equal(ip2a, ip2b)
## extract vcov
vc1 <- vcov(ip1)
vc2 <- vcov(ip2a)
## adjusted standard errors,
## smaller with more items used as anchors
sqrt(diag(vc1))
sqrt(diag(vc2))
## Wald confidence intervals
confint(ip1)
confint(ip2a)
options(digits = o$digits)
}
\keyword{classes}
|