1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
\name{plmodel}
\alias{plmodel}
\alias{print.plmodel}
\alias{summary.plmodel}
\alias{print.summary.plmodel}
\alias{coef.plmodel}
\alias{confint.plmodel}
\alias{bread.plmodel}
\alias{estfun.plmodel}
\alias{logLik.plmodel}
\alias{vcov.plmodel}
\title{Parametric Logistic Model Fitting Function}
\description{
\code{plmodel} is a basic fitting function for parametric logistic IRT models
(2PL, 3PL, 3PLu, 4PL, Rasch/1PL), providing a wrapper around
\code{\link[mirt]{mirt}} and \code{\link[mirt]{multipleGroup}} relying on
marginal maximum likelihood (MML) estimation via the standard EM algorithm.
}
\usage{
plmodel(y, weights = NULL, impact = NULL,
type = c("2PL", "3PL", "3PLu", "4PL", "1PL", "RM"),
grouppars = FALSE, vcov = TRUE,
start = NULL, method = "BFGS", maxit = 500, reltol = 1e-5, \dots)
}
\arguments{
\item{y}{item response object that can be coerced (via \code{\link[base]{as.matrix}})
to a numeric matrix with scores 0, 1. Typically, either
already a matrix, data frame, or dedicated object of class
\code{\link{itemresp}}.}
\item{weights}{an optional vector of weights (interpreted as case
weights).}
\item{impact}{an optional \code{factor} allowing for grouping
the subjects (rows). If specified, a multiple-group model is fitted
to account for impact (see details below). By default, no impact is
modelled, i.e., a single-group model is used.}
\item{type}{character string, specifying the type of parametric logistic
IRT model to be estimated (see details below).}
\item{grouppars}{logical. Should the estimated distributional group parameters
of a multiple group model be included in the model parameters?}
\item{vcov}{logical or character specifying the type of variance-covariance
matrix (if any) computed for the final model. The default \code{vcov = TRUE}
corresponds to \code{vcov = "Oakes"}, see \code{\link[mirt]{mirt}} for
further options. If set to \code{vcov = FALSE} (or \code{vcov = "none"}),
\code{vcov()} will return a matrix of \code{NA}s only.}
\item{start}{an optional vector or list of starting values (see examples
below).}
\item{method, maxit, reltol}{control parameters for the optimizer employed
by \code{\link[mirt]{mirt}} for the EM algorithm.}
\item{\dots}{further arguments passed to \code{\link[mirt]{mirt}} or
\code{\link[mirt]{multipleGroup}}, respectively.}
}
\details{
\code{plmodel} provides a basic fitting function for parametric logistic IRT
models (2PL, 3PL, 3PLu, 4PL, Rasch/1PL) providing a wrapper around
\code{\link[mirt]{mirt}} and \code{\link[mirt]{multipleGroup}} relying on
MML estimation via the standard EM algorithm (Bock & Aitkin, 1981). Models are
estimated under the slope/intercept parametrization, see e.g. Chalmers (2012).
The probability of person \eqn{i} \sQuote{solving} item \eqn{j} is modelled as:
\deqn{P(X_{ij} = 1|\theta_{i},a_{j},d_{j},g_{j},u_{j}) =
g_{j} + \frac{(u_{j} - g_{j})}{1 + \exp{(-(a_{j}\theta_{i} + d_{j}))}}}
A reparametrization of the intercepts to the classical IRT parametrization,
\eqn{b_{j} = -\frac{d_{j}}{a_{j}}}, is provided via the corresponding
\code{\link{itempar}} method.
If an optional \code{impact} variable is supplied, a multiple-group model of
the following form is being fitted: Item parameters are fixed to be equal
across the whole sample. For the first group of the \code{impact} variable the
person parameters are fixed to follow the standard normal distribution. In the
remaining \code{impact} groups, the distributional parameters (mean and
variance of a normal distribution) of the person parameters are
estimated freely. See e.g. Baker & Kim (2004, Chapter 11) or Debelak & Strobl
(2018) for further details. To improve convergence of the model fitting
algorithm, the first level of the \code{impact} variable should always correspond
to the largest group. If this is not the case, levels are re-ordered internally.
If \code{grouppars} is set to \code{TRUE} the freely estimated distributional
group parameters (if any) are returned as part of the model parameters.
By default, \code{type} is set to \code{"2PL"}. Therefore, all so-called
guessing parameters are fixed at 0 and all upper asymptotes are fixed at 1.
\code{"3PL"} results in all upper asymptotes being fixed at 1 and \code{"3PLu"}
results in all all guessing parameters being fixed at 0. \code{"4PL"} results
in a full estimated model as specified above. Finally, if \code{type} is set to
\code{"1PL"} (or equivalently \code{"RM"}), an MML-estimated Rasch model is
being fitted. This means that all slopes are restricted to be equal across all
items, all guessing parameters are fixed at 0 and all upper asymptotes are
fixed at 1.
Note that internally, the so-called guessing parameters and upper asymptotes
are estimated on the logit scale (see also \code{\link[mirt]{mirt}}).
Therefore, most of the basic methods below include a \code{logit} argument,
which can be set to \code{TRUE} or \code{FALSE} allowing for a retransformation
of the estimates and their variance-covariance matrix (if requested) using the
logistic function and the delta method if \code{logit = FALSE}.
\code{plmodel} returns an object of class \code{"plmodel"} for which
several basic methods are available, including \code{print}, \code{plot},
\code{summary}, \code{coef}, \code{vcov}, \code{logLik}, \code{estfun},
\code{\link{discrpar}}, \code{\link{itempar}}, \code{\link{threshpar}},
\code{\link{guesspar}}, \code{\link{upperpar}}, and \code{\link{personpar}}.
}
\value{
\code{plmodel} returns an S3 object of class \code{"plmodel"},
i.e., a list of the following components:
\item{coefficients}{estimated model parameters in slope/intercept parametrization,}
\item{vcov}{covariance matrix of the model parameters,}
\item{data}{modified data, used for model-fitting, i.e., without
observations with zero weight,}
\item{items}{logical vector of length \code{ncol(y)}, indicating
which items were used during estimation,}
\item{n}{number of observations (with non-zero weights),}
\item{n_org}{original number of observations in \code{y},}
\item{weights}{the weights used (if any),}
\item{na}{logical indicating whether the data contain \code{NA}s,}
\item{impact}{either \code{NULL} or the supplied \code{impact} variable
with the levels reordered in decreasing order (if this has not been the case
prior to fitting the model),}
\item{loglik}{log-likelihood of the fitted model,}
\item{df}{number of estimated (more precisely, returned) model parameters,}
\item{code}{convergence code from \code{mirt},}
\item{iterations}{number of iterations used by \code{mirt},}
\item{reltol}{convergence threshold passed to \code{mirt},}
\item{grouppars}{the logical \code{grouppars} value,}
\item{type}{the \code{type} of model restriction specified,}
\item{mirt}{the \code{mirt} object fitted internally.}
}
\references{
Baker FB, Kim SH (2004).
\emph{Item Response Theory: Parameter Estimation Techniques}.
Chapman & Hall/CRC, Boca Raton.
Bock RD, Aitkin M (1981).
Marginal Maximum Likelihood Estimation of Item Parameters: Application of
an EM Algorithm.
\emph{Psychometrika}, \bold{46}(4), 443--459.
Chalmers RP (2012).
mirt: A Multidimensional Item Response Theory Package for the R Environment.
\emph{Journal of Statistical Software}, \bold{48}(6), 1--29.
\doi{10.18637/jss.v048.i06}
Debelak R, Strobl C (2018).
Investigating Measurement Invariance by Means of Parameter Instability Tests
for 2PL and 3PL Models.
\emph{Educational and Psychological Measurement}, forthcoming.
\doi{10.1177/0013164418777784}
}
\seealso{\code{\link{raschmodel}}, \code{\link{gpcmodel}},
\code{\link{rsmodel}}, \code{\link{pcmodel}}, \code{\link{btmodel}}}
\examples{
if(requireNamespace("mirt")) {
o <- options(digits = 4)
## mathematics 101 exam results
data("MathExam14W", package = "psychotools")
## 2PL
twopl <- plmodel(y = MathExam14W$solved)
summary(twopl)
## how to specify starting values as a vector of model parameters
st <- coef(twopl)
twopl <- plmodel(y = MathExam14W$solved, start = st)
## or a list containing a vector of slopes and a vector of intercepts
set.seed(0)
st <- list(a = rlnorm(13, 0, 0.0625), d = rnorm(13, 0, 1))
twopl <- plmodel(y = MathExam14W$solved, start = st)
## visualizations
plot(twopl, type = "profile")
plot(twopl, type = "regions")
plot(twopl, type = "piplot")
plot(twopl, type = "curves", xlim = c(-6, 6))
plot(twopl, type = "information", xlim = c(-6, 6))
## visualizing the IRT parametrization
plot(twopl, type = "curves", xlim = c(-6, 6), items = 1)
abline(v = itempar(twopl)[1])
abline(h = 0.5, lty = 2)
## 2PL accounting for gender impact
table(MathExam14W$gender)
mtwopl <- plmodel(y = MathExam14W$solved, impact = MathExam14W$gender,
grouppars = TRUE)
summary(mtwopl)
plot(mtwopl, type = "piplot")
## specifying starting values as a vector of model parameters, note that in
## this example impact is being modelled and therefore grouppars must be TRUE
## to get all model parameters
st <- coef(mtwopl)
mtwopl <- plmodel(y = MathExam14W$solved, impact = MathExam14W$gender,
start = st)
## or a list containing a vector of slopes, a vector of intercepts and a vector
## of means and a vector of variances as the distributional group parameters
set.seed(1)
st <- list(a = rlnorm(13, 0, 0.0625), d = rnorm(13, 0, 1), m = 0, v = 1)
mtwopl <- plmodel(y = MathExam14W$solved, impact = MathExam14W$gender,
start = st)
## MML estimated Rasch model (1PL)
rm <- plmodel(y = MathExam14W$solved, type = "1PL")
summary(rm)
options(digits = o$digits)
}
}
\keyword{regression}
|