File: khmal.R

package info (click to toggle)
r-cran-quantreg 5.38-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 3,080 kB
  • sloc: fortran: 7,125; makefile: 2
file content (138 lines) | stat: -rw-r--r-- 4,762 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"rqProcess" <-
function (formula, data, taus, nullH = "location", ...) 
{
    z <- summary(f <- lm(formula, data = data, x = TRUE))
    xbar <- apply(f$x,2,mean)
    vars <- names(z$coef[-1, 1])
    p <- length(z$coef[, 1])
    n <- nrow(z$x)
    Jinv <- z$cov.unscaled
    pivot <- any(taus < 0) || any(taus > 1)
    if(!pivot){ #grid method
       if(abs(diff(range(diff(taus)))) > sqrt(.Machine$double.eps))
		stop("rqProcess must be evaluated on equally spaced taus")
       ntaus <- length(taus)
       coefs <- matrix(0, ntaus, p)
       Cov <- array(0, c(p, p, ntaus))
       for (i in 1:ntaus) {
           z <- summary(rq(formula, data = data, tau = taus[i], method = "fn"), 
		covariance = TRUE, ...)
           coefs[i, ] <- z$coef[, 1]
           Cov[, , i] <- z$cov/(taus[i]*(1 - taus[i]))
           }
    qtaus <- coefs %*% xbar
    Vhat <- t(coefs)[-1,,drop=FALSE]
    vhat <- t(coefs)[-1,,drop=FALSE]
    J <- solve(Jinv)
    p <- nrow(J)
    if (nullH == "location-scale") {
	f <- lm(coefs[,-1] ~ coefs[,1]) 
        b <- matrix(f$coef,2,p-1)[2,]
        R <- matrix(f$resid,ntaus,p-1)
        for (j in 1:length(taus)) {
            V <- Cov[, , j] 
            v <- V[-1, -1] + V[1, 1] * outer(b,b) - 
                outer(V[-1, 1], b) - t(outer(V[-1, 1], b))
            v <- solve(v)
            v <- chol(0.5 * (v + t(v)))
            Vhat[,j] <- v %*% R[j,]
            for (i in 2:p) {
                v <- V[i, i] + V[1, 1] * b[i-1]^2 - 2 * V[i, 1] * b[i-1]
                vhat[i-1,j] <- R[j, i-1]/sqrt(v)
               }
           }
        }
    else if (nullH == "location") {
        b <- apply(coefs, 2, mean)
        R <- t(coefs) - b
        for (j in 1:length(taus)) {
            V <- Cov[, , j] 
            A <- solve(V[-1, -1,drop=FALSE])
            B <- chol(0.5 * (A + t(A)))
            Vhat[,j] <- B %*% R[-1, j,drop=FALSE]
            vhat[,j] <- R[-1, j,drop=FALSE] / (sqrt(diag(V))[-1])
            }
         }
       }
   else{
	z <- rq(formula,data = data, tau = -1)
	taus <-  z$sol[1,]
	ntaus <- length(taus)
	qtaus <- z$sol[2,]
	qden <- qdensity(taus, qtaus)
	A <- solve(Jinv[-1,-1,drop=FALSE])
	B <- z$sol[-(1:3),,drop=FALSE]
	if(nullH == "location")
	   R <- B[-1,,drop=FALSE] - c(((B[-1,-1] + B[-1,-ntaus])/2) %*% diff(taus))
	else if(nullH == "location-scale")
	   R <- t(lm(t(B[-1,,drop=FALSE]) ~ B[1,])$resid)
	Vhat <- (chol(A) %*% t(t(R) * qden$s) )[,!qden$trim,drop=FALSE]
	vhat <- (t(t(R) * qden$s)/(sqrt(diag(Jinv))[-1]))[,!qden$trim,drop=FALSE]
	taus <- taus[!qden$trim]
	qtaus <- qtaus[!qden$trim]
	}
    dimnames(Vhat) <- list(vars, NULL)
    dimnames(vhat) <- list(vars, NULL)
    x <- list(taus = taus, qtaus = qtaus, Vhat = Vhat, vhat = vhat)
    class(x) <- "rqProcess"
    x
}
"qdensity" <- function(u,q,alpha = .05) {
#Computes Siddiqui estimate of quantile density function, fhat(F^{-1}(tau)) 
#Based on quantile regression process, using trimming proportion alpha 
#linear interpolation calls approx()  april, 2006
#h <- 0.6 * bandwidth.rq(u, length(u),hs=FALSE) #local bandwidth 
h <-  bandwidth.rq(u, length(u)) #local bandwidth 
trim <- ((u - h) < alpha) | ((u + h) > 1 - alpha)
qlo <- approx(u, q, u - h)$y
qup <- approx(u, q, u + h)$y
s <- (2 * h)/(qup - qlo)
list(s=s, trim = trim)
}
"KhmaladzeTest"  <-
function (formula, data = NULL, taus = -1, nullH = "location", 
	trim = c(0.05, 0.95), ...) 
{
    f <- rqProcess(formula, data = data, taus=taus, nullH = nullH, ...)
    Vtilde <- khmaladzize(f$taus, f$qtaus, f$Vhat, nullH)
    vtilde <- khmaladzize(f$taus, f$qtaus, f$vhat, nullH)
    trim <- (f$taus >= trim[1] & f$taus <= trim[2])
    Tvtilde <- (vtilde - vtilde[, 2])/sqrt(max(f$taus) - min(f$taus))
    TVtilde <- apply(abs(Vtilde - Vtilde[, 2])/
	sqrt(max(f$taus) - min(f$taus)), 2, "sum")[trim]
    Tn <- max(TVtilde)
    THn <- apply(abs(Tvtilde[, trim,drop = FALSE]), 1, max)
    x <- list(nullH = nullH, Tn = Tn, THn = THn)
    class(x) <- "KhmaladzeTest"
    x
}
"khmaladzize" <- 
function (taus, qtaus, Z, nullH) {
    dtaus <- diff(taus)
    dtaus <- c(dtaus[1], dtaus)
    score <- akj(qtaus, qtaus, dtaus)
    L <- length(taus)
    gdot2 <- -score$psi
    gdot <- cbind(rep(1, L), gdot2)
    if (nullH == "location-scale") {
        gdot3 <- gdot2 * qtaus
        gdot <- cbind(gdot, gdot3)
    }
    kmin <- 0
    p <- nrow(Z)
    for (i in 1:p) {
        v <- Z[i, ]
        dv <- c(0, diff(v))
        x1 <- gdot * sqrt(dtaus)
        x1 <- x1[L:1, ]
        y1 <- rev(dv/sqrt(dtaus))
        bhat <- lm.fit.recursive(x1, y1, int = FALSE)
        bhat <- bhat[, L:1]
        dvhat <- diag(gdot %*% bhat) * dtaus
        vhat <- cumsum(dvhat)
        v <- v[kmin:L - kmin]
        vhat <- vhat[kmin:L - kmin]
        Z[i, ] <- v - vhat
    }
    return(Z)
}