1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
ParetoTest <- function(formula, tau = 0.1, data = NULL, flavor = "Hill",
m = 2, cicov = 0.9, ...) {
if(flavor == "Hill")
z <- Hill(formula, tau, data, ...)
else if(flavor == "Pickands")
z <- Pickands(formula, tau, data, m = m, ...)
else
stop(paste("flavor", flavor, "not (yet) implemented"))
summary(z, ci = cicov, ...)
}
# Pickands Estimation and Inference for the Pareto Tail Exponent
Pickands <- function(formula, tau = 0.1, data = NULL, m = 2, ...){
y <- model.response(model.frame(formula, data))
X <- model.matrix(formula, data)
Pickands.fit(X, y, tau, m, ...)
}
Pickands.fit <- function(X, y, tau, m, ...){
if(tau > 0.5){ # Right tail
X <- -X
y <- -y
tau = 1-tau
}
taus = c(tau, m * tau, 2 * m * tau)
F <- rq(y ~ X - 1, tau = taus, ...)
Xbar = colMeans(X)
num = c(crossprod(Xbar, (F$coef[,3] - F$coef[,2])))
denom = c(crossprod(Xbar, (F$coef[,2] - F$coef[,1])))
xi <- (-1/log(m)) * log(num/denom)
z <- list(xi = xi, tau = tau, m = m, F = F)
class(z) <- "Pickands"
z
}
summary.Pickands <- function(object, se = "boot", B = 200, ci = 0.9, ...){
tau <- object$tau
xi <- object$xi
m <- object$m
X <- object$F$x
y <- object$F$y
n <- length(y)
b1 <- object$F$coef[,1]
bm <- object$F$coef[,2]
Xbar <- colMeans(X)
Xg <- X %*% (bm - b1)/c(crossprod(Xbar, bm - b1)) #aargh humbug!
R <- rep(NA, B)
for(i in 1:B){ # Parametric Bootstrap Default Method
ys <- -(rexp(n)^(-xi) - 1)/xi * Xg
R[i] <- Pickands.fit(X, ys, tau, m = m, ...)$xi
}
z <- rep(NA,6)
z[1] <- xi
z[2] <- xi - quantile(R - xi, .5, na.rm=TRUE)
z[3] <- xi - quantile(R - xi, (1+ci)/2, na.rm=TRUE)
z[4] <- xi - quantile(R - xi, (1-ci)/2, na.rm=TRUE)
z[5] <- sqrt(var(R))
z[6] <- B - sum(is.na(R))
names(z) <- c("Estimate", "Bias-Corrected", paste("Lower ", 50*(1-ci),"%",sep=""),
paste("Upper ", 50*(1+ci),"%",sep=""), "StdErr", "Sample Size")
z <- list(z = z, tau = tau)
class(z) = "summary.Pickands"
z
}
print.Pickands <- function(x, ...){
print(x$xi)
}
print.summary.Pickands <- function(x, ...){
cat(paste("Pickands Estimation and Inference: tau = ", x$tau,
"Effective Bootstrap Sample Size = ",x$z[6],"\n\n"))
print(x$z[1:5])
}
if(FALSE){
# Test problem
require(quantreg)
n = 500
x = rnorm(n)
y = x + rt(n,2)
P = Pickands(y ~ x, .9)
S = summary(P)
}
# Hill Estimation and Inference for the Pareto Tail Exponent
Hill <- function(formula, tau = 0.1, data = NULL, ...){
y <- model.response(model.frame(formula, data))
X <- model.matrix(formula, data)
Hill.fit(X, y, tau)
}
Hill.fit <- function(X, y, tau, ...){
if(tau > 0.5){ # Right tail
X <- -X
y <- -y
tau = 1-tau
}
F <- rq.fit(X, y, tau = tau, ...)
yhat <- F$fitted.values
z <- log(ifelse(y <= yhat, abs(y/yhat), 1))
z <- z[is.finite(z)]
z <- list(xi = sum(z)/(length(z)*tau), tau = tau, F = F)
class(z) <- "Hill"
z
}
summary.Hill <- function(object, se = "boot", B = 200, m = 2, ci = 0.9, ...){
tau <- object$tau
xi <- object$xi
X <- object$F$x
y <- object$F$y
n <- length(y)
b0 <- object$F$coef
bm <- rq.fit(X, y, m * tau, ...)$coef
Xbar <- colMeans(X)
Xg <- X %*% (bm - b0)/c(crossprod(Xbar, bm - b0)) #aargh humbug!
R <- rep(NA, B)
for(i in 1:B){ # Parametric Bootstrap Default Method
ys <- -(rexp(n)^(-xi) - 1)/xi * Xg
R[i] <- Hill.fit(X, ys, tau, ...)$xi
}
z <- rep(NA,6)
z[1] <- xi
z[2] <- xi - quantile(R - xi, .5, na.rm=TRUE)
z[3] <- xi - quantile(R - xi, (1+ci)/2, na.rm=TRUE)
z[4] <- xi - quantile(R - xi, (1-ci)/2, na.rm=TRUE)
z[5] <- sqrt(var(R))
z[6] <- B - sum(is.na(R))
names(z) <- c("Estimate", "Bias-Corrected", paste("Lower ", 50*(1-ci),"%",sep=""),
paste("Upper ", 50*(1+ci),"%",sep=""), "BS_StdErr", "Sample Size")
z <- list(z = z, tau = tau)
class(z) = "summary.Hill"
z
}
print.Hill <- function(x, ...){
print(x$xi)
}
print.summary.Hill <- function(x, ...){
cat(paste("Hill Estimation and Inference: tau = ", x$tau,
"Effective Bootstrap Sample Size = ",x$z[6],"\n\n"))
print(x$z[1:5])
}
|