1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
|
## Authors
## Martin Schlather, schlather@math.uni-mannheim.de
##
##
## Copyright (C) 2015 -- 2017 Martin Schlather
##
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3
## of the License, or (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
## source("modelling.R")
predictGauss <- function(Reg,
Reg.predict= if (missing(model)) Reg else
RFopt$register$predict_register,
model, x, y = NULL, z = NULL, T=NULL, grid=NULL,
data, distances, dim, kriging_variance, ...) {
relax <- !missing(model) && !is.null(model) && is(model, "formula")
RFoptOld <- internal.rfoptions(..., RELAX=relax)
on.exit(RFoptions(LIST=RFoptOld[[1]]))
RFopt <- RFoptOld[[2]]
if (missing(model) || is.null(model)) {
## no measurement errors
if (Reg != Reg.predict) stop("'Reg.predict' may not be given.")
model <- list("predict", register=Reg)
} else {
## here, 'Reg' contains a measurement structure, and model is without it
if (Reg == Reg.predict) stop("'Reg.predict' must be different from 'Reg'")
model <- list("predict", PrepareModel2(model), register=Reg)
## to do : warum nachfolgendes? hat doch keine Wirkung!?
splittingC <- function(model, preceding, factor) {
const <- sapply(model[-1],
function(m) (is.numeric(m) && !is.na(m)) ||
(m[[1]] == R_CONST && !is.na(m[[2]]))
)
if (all(const)) {
model <- c(model[1], if (preceding > 0) rep(0, preceding), model[-1])
return(list(SYMBOL_MULT, model, if (!missing(factor)) list(factor)))
}
for (i in 2:length(model)) {
vdim <- preceding + (if (i==2) 0 else GetDimension(model[[i-1]]))
m <- ReplaceC(model[[i]])
L <- GetDimension(m)
model[[i]] <- setvector(m, preceding = vdim, len = L, factor=factor)
}
model[[1]] <- SYMBOL_PLUS
names(model) <- NULL
L <- GetDimension(model[[length(model)]])
model <- SetDimension(model, L)
}
}
rfInit(model=model, x=x, y=y, z=z, T=T, grid=grid,
distances=distances, dim=dim, reg = Reg.predict, RFopt=RFopt)
.Call(C_EvaluateModel, double(0), as.integer(Reg.predict))
}
GetModelEffects <- function(Z) {
.Call(C_SetAndGetModelLikelihood, MODEL_AUX,
list("RFloglikelihood", data = Z$data, Z$model),
trafo.to.C_UnifyXT(Z$coord), original)$effect
}
ModelAbbreviations <- function(model){
L <- length(model)
N <- character(L)
##Print(model)
for (mm in 1:L) {
m <- unlist(model[[mm]])
dollar <- m==DOLLAR[1] | m==DOLLAR[2]
idx <- which( names(m) != "" & !dollar) ## names(m):names of parameters
## Print(m, mm, dollar, idx, names(m))
for (s in which(dollar)) {
## Print(s, which(idx > s))
z <- idx[min(which(idx > s))] ## to which model belongs the dollar param?
m[s] <- m[z] ## put the name of subsequent model in position of dollar pos
m <- m[-z] ## delete subseqeuent model
}
idx <- names(m) != ""
m[idx] <- paste(names(m)[idx], m[idx], sep="=")
N[mm] <- paste(abbreviate(m), collapse =".")
## Print(idx, m, N)
}
return(N)
}
ModelParts <- function(model, effects, complete) { ## model immer schon aufbrtt
model <- PrepareModel2(model) ##, params=params, ...)
model <- if ((model[[1]] %in% SYMBOL_PLUS)) model[-1] else list(model)
if (complete) {
return(model[effects >= RandomEffect])
} else {
err <- model[effects == ErrorEffect]
if (length(err) == 1) err <- err[[1]] else err <- c(SYMBOL_PLUS, err)
m <- model[effects == RandomEffect]
if (length(m) == 1) m <- m[[1]] else m <- c(SYMBOL_PLUS, m)
return(list(model=m, err.model=err))
}
}
xRFranef <- function(fit, method="ml", OP='@') { ## see ranef random effect
#Z <- do.call(OP, list(object, "Z"))
# model <- fit[method]
# parts <- ModelParts(model, effects=GetModelEffects(Z), complete=TRUE)
# ans <- RFinterpolate(model, x = Z$coord, data = Z$data, given = Z$coord,
# err.model=parts)
# return(ans)
}
FinImputIntern <- function(data, simu, coords, coordnames, data.col, vdim,
spConform, fillall=FALSE) {
n <- length(data) / (vdim * coords$restotal)
#Print(data, all, tail(all$simu), spConform);
if (is(data, "RFsp")) {
if (spConform) {
data@data[ , ] <- as.vector(simu)
return(data)
} else {
values <- as.matrix(data@data)
values[is.na(values) | fillall] <- simu
return(cbind(coordinates(data), values))
}
} else { ## not RFsp
#Print("for testing")
if (coords$grid) {
## to do
stop("not programmed yet")
} else {
## coords <- all$x
colnames(coords$x) <- coordnames
values <- data[, data.col]
values[is.na(values) | fillall] <- simu
if (!spConform) return(cbind(coords$x, values))
tmp.all <- conventional2RFspDataFrame(data=values, coords=coords$x,
gridTopology=NULL,
n=n, vdim=vdim,
vdim_close_together=FALSE)
if (is(tmp.all, "RFspatialPointsDataFrame"))
try(tmp.all <- as(tmp.all, "RFspatialGridDataFrame"), silent=TRUE)
if (is(tmp.all, "RFpointsDataFrame"))
try(tmp.all <- as(tmp.all, "RFgridDataFrame"), silent=TRUE)
}
return(tmp.all)
}
}
FinishImputing <- function(data, simu, Z, spConform, fillall) {
## to do: grid
if (is.list(data)) {
for (i in 1:length(data))
data[[i]] <- FinImputIntern(data=data[[i]], simu=simu[[i]],
coords=Z$coord[[i]], coordnames=Z$coordnames,
data.col=Z$data.col, vdim=Z$vdim,
spConform = spConform, fillall=fillall)
return(data)
}
return(FinImputIntern(data=data[[1]], simu=simu, coords=Z$coord[[1]],
coordnames=Z$coordnames, data.col=Z$data.col,
vdim=Z$vdim, spConform=spConform, fillall=fillall))
}
ExpandGrid <- function(x) {
#### ACHTUNG! ZWINGENDE REIHENFOLGE
if (x$grid) { # 0
x$x <-
as.matrix(do.call(expand.grid,
lapply(apply(cbind(x$x, x$T), 2,
function(x) list(seq(x[1],by=x[2],length.out=x[3]))), function(x) x[[1]])))
} else if (x$has.time.comp) {
dim.x <- if (is.vector(x$x)) c(length(x$x), 1) else dim(x$x)
x$x <- cbind(matrix(rep(t(x$x), times=x$T[3]),
ncol=dim.x[2], byrow=FALSE),
rep(seq(x$T[1], by=x$T[2],
length.out=x$T[3]), each=dim.x[1]))
}
if (length(x$y) > 0) stop("no expansion within a kernel definition")
# x$y <- double(0) #1
x$T <- double(0) #2
x$grid <- FALSE #3
# x$spatialdim <- ncol(x$x) #4
x$has.time.comp <- FALSE #5
# x$di st.given <- FALSE #6
x$restotal <- nrow(x$x) #7
x$l <- x$restotal #8
return(x)
}
rfPrepareData <- function(model, x, y=NULL, z=NULL, T=NULL,
distances=NULL, dim, grid,
data, given=NULL, params,
RFopt, reg, err.model = NULL,
err.params,
...) {
## NOTE: if err.model is a list of list, the err.model is
## not added to the krige model, but both are taken as they are
## internal behaviour to get the random effects with the
## existing algorithm!!
if (is(model, "RFfit")) {
message("To continue with the output of 'RFfit' better use 'predict' or give the components separately.")
model <- model["ml"]
}
if (!missing(distances) && length(distances)>0)
stop("option distances not programmed yet.")
# Print(model=model, data=data, given=given, T, ...)
missing.x <- missing(x) || length(x) == 0
imputing <- missing.x && length(distances) == 0
# Print(model=model, data=data,...)
if (length(given) == 0) {
## so either within the data or the same the x-values
Z <- UnifyData(model=model, data=data, RFopt=RFopt, params=params, ...)
if (Z$matrix.indep.of.x.assumed) {
if (missing.x) stop("coordinates cannot be detected")
Z <- UnifyData(model=model, x=x, y=y, z=z, T=T, RFopt=RFopt,
distances=distances, dim=dim, grid=grid,
data=data, params=params, ...)
}
} else {
Z <- UnifyData(model=model, data=data, x=given, RFopt=RFopt,
params=params,...)
}
model <- krige <- Z$model
if (length(Z$data) != 1) stop("exactly one data set must be given.")
dim_data <- base::dim(Z$data[[1]])
Z$data[[1]] <- as.double(Z$data[[1]])
repet <- Z$repetitions
new.dim_data <- c(prod(dim_data) / repet, repet)
base::dim(Z$data[[1]]) <- new.dim_data
data.na <- is.na(Z$data[[1]])
data.na.var <- rowSums(data.na)
base::dim(Z$data[[1]]) <- dim_data
base::dim(data.na.var) <- c(length(data.na.var) / Z$vdim , Z$vdim)
data.na.loc <- rowSums(data.na.var > 0) > 0
any.data.na <- any(data.na.loc)
split <- any(data.na.var > 0 & data.na.var != repet)
if (any.data.na && Z$coord[[1]]$dist.given)
stop("missing values not programmed yet for given distancs")
if (imputing) {
if (Z$vdim > 1) stop("imputing does not work in the multivariate case")
if (repet == 1) {
if (RFopt$krige$fillall || !any.data.na) {
data.na <- rep(TRUE, length(data.na)) ## nur
## um Daten im Endergebnis einzutragen
new <- Z$coord[[1]]
} else {
new <- ExpandGrid(Z$coord[[1]])
new$x <- new$x[data.na.loc, , drop=FALSE]
}
} else new <- NULL
} else {
## needed in soilRd, in condsimu!!
new <- UnifyXT(x, y, z, T, grid=grid, distances=distances, dim=dim)
## new <- Z$coord[[1]] ## why was this set???
## Print(new, UnifyXT(x, y, z, T, grid=grid, distances=distances, dim=dim)); kkkff
if (Z$tsdim != new$spatialdim + new$has.time.comp)
stop("coodinate dimension of locations with and without data, ",
"respectively, do not match.")
}
na_rm_lines <- FALSE
if (any.data.na) {
na_rm_lines <- RFopt$general$na_rm_lines
if (na_rm_lines && (!imputing || repet==1)) {
Z$data[[1]] <- Z$data[[1]][!data.na.loc, , drop=FALSE]
Z$coord[[1]] <- ExpandGrid(Z$coord[[1]])
Z$coord[[1]]$x <- Z$coord[[1]]$x[!data.na.loc, , drop=FALSE]
} else if (split) {
data <- list()
dim(Z$data[[1]]) <-
c(length(Z$data[[1]]) / (Z$vdim*repet), Z$vdim, repet)
for (i in 1:repet) data[[i]] <- Z$data[[1]][ , , i, drop=FALSE]
Z$data <- data
}
}
Z$na_rm_lines <- na_rm_lines
## krige enthaelt err.model
## model ohne err.model
if (length(err.model) == 0) {
model <- list(model)
} else if (is(err.model, "RMmodel") ||
(is.list(err.model) && !is.list(err.model[[1]]))) {
linpart <- RFlinearpart(model=err.model, params=err.params, new$x, set=1,
...)
if (length(linpart$X) > 0 || any(linpart$Y != 0))
stop("a trend is not allowed for the error model.")
krige <- list(SYMBOL_PLUS, PrepareModel2(err.model, params=err.params, ...),
model)
model <- list(model)
} else if (is.list(err.model) && !is.character(err.model[[1]])) {
model <- list()
if (missing(err.params)) err.params <- list()
for (i in 1:length(err.model)) {
linpart <- RFlinearpart(model=err.model[[i]], new$x, set=1)
if (length(linpart$X) > 0 || any(linpart$Y != 0))
stop("a trend is not allowed for the error model.")
model[[i]] <- PrepareModel2(err.model[[i]], params=err.params[[i]], ...)
}
} else if (is.vector(err.model) && length(err.model)==1 && is.na(err.model)
&& missing(err.params)) {
model <- list(ModelParts(model, effects=GetModelEffects(Z),
complete = FALSE)$model)
} else stop("The argument 'err.model' cannot be interpreted. or 'err.params' is given where it should not")
return(list(Z=Z, X=new,
krige = krige, # model for the matrix to be inverted in SK
model=model, # model for the vector in SK
imputing=imputing, data.na = if (imputing) data.na))
}
RFinterpolate <- function(model, x, y=NULL, z=NULL, T=NULL, grid=NULL,
distances, dim, data, given=NULL, params,
err.model=NULL, err.params,
ignore.trend=FALSE, ...) {
if (is(model, "RFfit")) {
message("To continue with the output of 'RFfit' use 'predict' or give the components separately")
model <- model["ml"]
}
if (!missing(distances) && length(distances) > 0) stop("'distances' not programmed yet.")
opt <- list(...)
i <- pmatch(names(opt), c("MARGIN"))
opt <- opt[is.na(i)]
RFoptOld <- do.call("internal.rfoptions", c(opt, RELAX=is(model, "formula")))
on.exit(RFoptions(LIST=RFoptOld[[1]]))
RFopt <- RFoptOld[[2]]
boxcox <- .Call(C_get_boxcox)
## eingabe wird anstonsten auch als vdim_close erwartet --
## dies ist nocht nicht programmiert! Ausgabe ist schon programmiert
## CondSimu ist auch noch nicht programmiert
if (RFopt$general$vdim_close_together)
stop("'vdim_close_together' must be FALSE")
reg <- MODEL_KRIGE
return.variance <- RFopt$krige$return_variance
all <- rfPrepareData(model=model, x=x, y=y, z=z, T=T,
distances=distances, dim=dim, grid=grid,
data=data, given=given, params=params, RFopt=RFopt,
reg=reg, err.model = err.model, err.params=err.params,
...)
## Print("start", all$Z);
imputing <- all$imputing
tsdim <- as.integer(all$Z$tsdim)
repet <- as.integer(all$Z$repetitions)
vdim <- all$Z$vdim
if (!imputing) {
coordnames.incl.T <-
c(if (!is.null(all$Z$coordnames)) all$Z$coordnames else
paste(COORD_NAMES_GENERAL[1], 1:all$Z$spatialdim, sep=""),
if (all$Z$has.time.comp) COORD_NAMES_GENERAL[2] else NULL)
if (all$X$grid) {
coords <- list(x=NULL, T=NULL)
xgr <- cbind(all$X$x, all$X$T)
# Print(xgr, coordnames.incl.T)
colnames(xgr) <- coordnames.incl.T
gridTopology <- sp::GridTopology(xgr[1, ], xgr[2, ], xgr[3, ])
## bis 3.0.70 hier eine alternative
} else {
coords <- list(x=all$X$x, T=all$X$T)
## wenn bei gegeben unklar was zu tun ist. Ansonsten
if (length(coords$T) == 0) colnames(coords$x) <- coordnames.incl.T
gridTopology <- NULL
}
}
nx <- all$X$restotal
dimension <-
if (all$X$grid) c(if (length(all$X$x) > 0) all$X$x[3, ],
if (length(all$X$T) > 0) all$X$T[3]) else nx # to do:grid
newdim <- c(dimension, if (vdim>1) vdim, if (repet>1) repet)
if (imputing && return.variance) {
return.variance <- FALSE
warning("with imputing, currently the variance cannot be returned")
}
L <- length(all$model)
#Print(length(all$Z$data), all$Z$data)
if (length(all$Z$data) > 1) {
Res <- array(dim=c(nx, vdim, repet))
for (i in 1:length(all$Z$data)) {
Res[ , , i] <-
RFinterpolate(model=model, x=x, y=y, z=z, T=T, grid=grid,
distances=distances, dim=dim,
data = all$Z$data[[i]], given = all$Z$coord,
err.model=err.model, ...,
spConform = FALSE, return_variance=FALSE)
}
dim(Res) <- c(nx * vdim, repet)
} else { ## length(all$Z$data) == 1
exact <- RFopt$general$exact
maxn <- RFopt$krige$locmaxn
ngiven <- as.integer(all$Z$coord[[1]]$restotal) ## number of given points
split <- RFopt$krige$locsplitn[1]
split <- ngiven > maxn || (!is.na(exact) && !exact && ngiven > split)
data <- RFboxcox(all$Z$data[[1]], vdim=vdim)
.Call(C_set_boxcox, c(Inf, 0))
if (imputing) {
Res <- rep(list(data), L)
} else {
Res <- rep(list(matrix(nrow=nx, ncol=repet * vdim)), L)
}
if (return.variance) sigma2 <- rep(list(NULL), L) ## currently just a dummy
names(Res) <- ModelAbbreviations(all$model)
if (split) {
## to do:
all$X <- ExpandGrid(all$X) ## to do
all$Z$coord[[1]] <- ExpandGrid(all$Z$coord[[1]]) ## to do
## neighbourhood kriging !
if (!is.na(exact) && exact)
stop("number of conditioning locations too large for an exact result.")
if (ngiven > maxn && is.na(exact) &&
RFopt$basic$printlevel>=PL_IMPORTANT)
message("performing neighbourhood kriging")
stop("neighbourhood kriging currently not programmed")
## calculate the boxes for the locations where we will interpolate
idx <- GetNeighbourhoods(Z=Z,
X=all$X, ## given locations; to do: grid
splitfactor=RFopt$krige$locsplitfactor,
maxn=RFopt$krige$locmaxn,
split_vec = RFopt$krige$locsplitn,
)
totalparts <- length(idx[[2]])
if (totalparts > 1) RFoptions(general.pch="")
pr <- totalparts > 1 && RFopt$general$pch != "" &&RFopt$general$pch != " "
for (p in 1:totalparts) {
stopifnot((Nx <- as.integer(length(idx[[3]][[p]]))) > 0)
if (pr && p %% 5==0) cat(RFopt$general$pch)
givenidx <- unlist(idx[[1]][idx[[2]][[p]]])
if (ignore.trend)
initRFlikelihood(all$krige,# including error structure
Reg=reg, grid=FALSE,
x=all$Z$coord[[1]]$x[givenidx, , drop=FALSE],
data=data[givenidx, , drop=FALSE],
ignore.trend = ignore.trend)
else
RFlikelihood(all$krige, # including error structure
Reg=reg, grid=FALSE,
x=all$Z$coord[[1]]$x[givenidx, , drop=FALSE],
data=data[givenidx, , drop=FALSE],
likelihood_register = reg)
for (m in i:L) {
res <- predictGauss(Reg=reg,
model=all$model[[m]], # without error structure
x = all$X[idx[[3]][[p]], ], grid = FALSE,
kriging_variance=FALSE)
if (imputing) {
## TO DO : idx[[3]] passt nicht, da sowohl fuer Daten
## als auch coordinaten verwendet wird. Bei repet > 1
## ist da ein Problem -- ueberpruefen ob repet=1
where <- all$data.na[idx[[3]][[p]]] ## to do:grid
isNA <- is.na(Res[[m]][where, ])
Res[[m]][where, ][isNA] <- res[isNA]
} else {
Res[[m]][idx[[3]][[p]], ] <- res
}
} ## for p in totalparts
if (pr) cat("\n")
}
} else { ## no splits
## Print(all$krige, Reg=reg, x=all$Z$coord, data=data,
## ignore.trend = ignore.trend)
## ccccc
if (ignore.trend)
initRFlikelihood(all$krige, Reg=reg, x=all$Z$coord, data=data,
ignore.trend = ignore.trend)
else RFlikelihood(all$krige, x=all$Z$coord, data=data,
likelihood_register = reg)
for (m in 1:L) {
Res[[m]] <- predictGauss(Reg=reg, model=all$model[[m]], x=all$X,
kriging_variance=FALSE)
}
}
} ## !is.list(Z)
Z <- all$Z ## achtung! oben kann sich noch all$Z aendern!
X <- all$X
spConform <- RFopt$general$spConform
for (m in 1:L) {
if (FALSE) {## jonas
if (return.variance && length(newdim <-
c(dimension, if (vdim>1) vdim)) > 1)
base::dim(sigma2[[m]]) <- newdim
}
if (length(newdim)>1) base::dim(Res[[m]]) <- newdim
else Res[[m]] <- as.vector(Res[[m]])
if (!is.null(Z$varnames)) attributes(Res[[m]])$varnames <- Z$varnames
Res[[m]] <- RFboxcox(data=Res[[m]], boxcox = boxcox, inverse=TRUE,vdim=vdim)
}
if (!spConform && !imputing) {
if (vdim > 1 && RFopt$general$vdim_close_together) {
Resperm <- c(length(dimension)+1, 1:length(dimension),
if(repet>1) length(dimension)+2)
for (m in 1:L) {
Res[[m]] <- aperm(Res[[m]], perm=Resperm)
if (return.variance)
sigma2[[m]] <- aperm(sigma2[[m]],
perm=Resperm[1:(length(dimension)+1)])
}
}
if (return.variance)
for (m in 1:L) Res[[m]] <- list(estim = Res[[m]], var = sigma2[[m]])
return( if (L == 1) Res[[1]] else Res)
}
if (imputing) {
for (m in 1:L) {
Res[[m]] <- FinishImputing(data=data, simu=Res[[m]], Z=Z,
spConform=spConform,
fillall = RFopt$krige$fillall) ## to do : grid
if (return.variance){
var <- FinishImputing(data=data, simu=sigma2[[m]], Z=Z,
spConform=spConform,
fillall = RFopt$krige$fillall)# to do : grid
if (spConform) {
names(var@data) <- paste("var.", names(var@data), sep="")
Res[[m]]@.RFparams$has.variance <- TRUE
Res[[m]] <- cbind(Res[[m]], var)
} else Res[[m]] <- list(Res[[m]], var)
}
}
return( if (L == 1) Res[[1]] else Res)
} else {
for (m in 1:L) {
Res[[m]] <- conventional2RFspDataFrame(Res[[m]], coords=coords$x,
gridTopology=gridTopology,
n=repet, vdim=vdim, T = coords$T,
vdim_close_together =
RFopt$general$vdim_close_together)
if (return.variance){
var <- conventional2RFspDataFrame(sigma2[[m]], coords=coords$x,
gridTopology=gridTopology,
n=1, vdim=vdim, T = coords$T,
vdim_close_together =
RFopt$general$vdim_close_together)
names(var@data) <- paste("var.", names(var@data), sep="")
Res[[m]]@.RFparams$has.variance <- TRUE
Res[[m]] <- cbind(Res[[m]], var)
}
}
}
# Res@.RFparams$krige.method <-
# c("Simple Kriging", "Ordinary Kriging", "Kriging the Mean",
# "Universal Kriging", "Intrinsic Kriging")[krige.meth.nr]
## Res@.RFparams$var <- sigma2 ## sehr unelegant.
## * plot(Res) sollte zwei Bilder zeigen
## * var(Res) sollte sigma2 zurueckliefern
## * summary(Res) auch summary der varianz, falls vorhanden
## * summary(Res) auch die Kriging methode
if (is.raster(x)) {
for (m in 1:L) {
Res[[m]] <- raster::raster(Res[[m]])
raster::projection(Res[[m]]) <- raster::projection(x)
}
}
return( if (L == 1) Res[[1]] else Res)
}
rfCondGauss <- function(model, x, y=NULL, z=NULL, T=NULL, grid, n=1,
data, # first coordinates, then data
given=NULL, ## alternative for coordinates of data
params,
err.model=NULL, err.params, ...) { # ... wegen der Variablen
## Print("cnd ", n)
dots <- list(...)
if ("spConform" %in% names(dots)) dots$spConform <- NULL
RFoptOld <- internal.rfoptions(..., RELAX=is(model, "formula"))
on.exit(RFoptions(LIST=RFoptOld[[1]]))
RFopt <- RFoptOld[[2]]
boxcox <- .Call(C_get_boxcox)
cond.reg <- RFopt$registers$register
all <- rfPrepareData(model=model, x=x, y=y, z=z, T=T, grid=grid,
data=data, given=given, params=params,
RFopt=RFopt, reg=MODEL_KRIGE,
err.model = err.model, err.params=err.params,...)
Z <- all$Z
X <- all$X
simu.grid <- X$grid
tsdim <- Z$tsdim
vdim <- Z$vdim
allowZero <- RFopt$general$allowdistanceZero
if (allowZero && !hasArg(err.model))
stop("in case of 'allowdistanceZero=TRUE' an error model must be given.")
data <- RFboxcox(Z$data[[1]], vdim=vdim)
.Call(C_set_boxcox, c(Inf, 0))
if (all$Z$repetitions != 1)
stop("conditional simulation allows only for a single data set")
txt <- "kriging in space time dimensions>3 where not all the point ly on a grid is not possible yet"
## if 4 dimensional then the last coordinates should ly on a grid
## now check whether and if so, which of the given points belong to the
## points where conditional simulation takes place
coord <- ExpandGrid(Z$coord[[1]])
simu <- NULL
if (simu.grid) {
xgr <- cbind(X$x, X$T)
l <- ncol(xgr)
# print(coord$x)
# print(xgr)
ind <- 1 + (t(coord$x) - xgr[1, ]) / xgr[2, ]
index <- round(ind)
outside.grid <- allowZero |
apply((abs(ind-index)>RFopt$general$gridtolerance) | (index<1) |
(index > 1 + xgr[3, ]), 2, any)
# print(ind-index)
# print(t(coord$x) - xgr[1, ])
# print((t(coord$x) - xgr[1, ]) / xgr[2, ] )
# Print(allowZero, ind, index, outside.grid, (abs(ind-index)>RFopt$general$gridtolerance), index<1, (index > 1 + xgr[3, ]))
if (any(outside.grid)) {
## at least some data points are not on the grid:
## simulate as if there is no grid
simu.grid <- FALSE
if (l>3) stop(txt)
xx <- if (l==1) ## dim x locations
matrix(seq(from=xgr[1], by=xgr[2], len=xgr[3]),
nrow=1)
else eval(parse(text=paste("t(expand.grid(",
paste("seq(from=xgr[1,", 1:l,
"], by=xgr[2,", 1:l,
"], len=xgr[3,", 1:l, "])", collapse=","),
"))")))
ll <- eval(parse(text=paste("c(",
paste("length(seq(from=xgr[1,", 1:l,
"], by=xgr[2,", 1:l,
"], len=xgr[3,", 1:l, "]))",
collapse=","),
")")))
new.index <- rep(0,ncol(index))
## data points that are on the grid, must be registered,
## so that they can be used as conditioning points of the grid
if (!all(outside.grid)) {
new.index[!outside.grid] <- 1 +
colSums((index[, !outside.grid, drop=FALSE]-1) *
cumprod(c(1, ll[-length(ll)])))
}
index <- new.index
new.index <- NULL
} else {
## Print("GRID")
## data points are all lying on the grid
simu <- do.call(RFsimulate, args=c(list(model=all$krige,
x=X$x, # y=y, z=z,
T=X$T,
grid=X$grid,
n=n,
register=cond.reg,
seed = NA),
dots, list(spConform=FALSE)))
## Print(simu, all$krige, n, mean(simu), mean(simu[,,1])); kkk
## for all the other cases of simulation see, below
if (is.vector(simu)) dim(simu) <- c(length(simu), 1)
else if (!is.matrix(simu)) { ## 3.1.26 is programmed differently
nvdim <- (vdim > 1) + (n > 1)
if (nvdim > 0) {
d <- dim(simu)
last <- length(d) + 1 - (1 : nvdim)
dim(simu) <- c(prod(d[-last]), prod(d[last]))
} else dim(simu) <- c(length(simu), 1)
}
cum <- cumprod(c(1, xgr[3, -ncol(xgr)]))
index <- as.vector(1 + cum %*% (index - 1))
if (is.vector(simu)) dim(simu) <- c(length(simu), 1)
total <- dim(simu)[1]
simu.given <- do.call("[", c(list(simu, index, drop=FALSE),
as.list(rep(TRUE,length(dim(simu))-1))))
}
} else { ## not simu.grid
xx <- t(X$x) ## dim x locations
## the next step can be pretty time consuming!!!
## to.do: programme it in C
##
## identification of the points that are given twice, as points to
## be simulated and as data points (up to a tolerance distance !)
## this is important in case of nugget effect, since otherwise
## the user will be surprised not to get the value of the data at
## that point
one2ncol.xx <- 1:ncol(xx)
index <- if (allowZero) rep(0, nrow(coord$x))
else apply(coord$x, 1, function(u){
i <- one2ncol.xx[colSums(abs(xx-u)) <RFopt$general$gridtolerance]
if (length(i)==0) return(0)
if (length(i)==1) return(i)
return(NA)
})
}
if (!simu.grid) {
## otherwise the simulation has already been performed (see above)
tol <- RFopt$general$gridtolerance * nrow(xx)
if (any(is.na(index)))
stop("identification of the given data points is not unique - `tol' too large?")
if (any(notfound <- (index==0))) {
index[notfound] <- (ncol(xx) + 1) : (ncol(xx) + sum(notfound))
}
xx <- rbind(t(xx), coord$x[notfound, , drop=FALSE])
## Print(model=all$krige, x=xx, grid=FALSE, n=n,
## register = cond.reg, seed = NA, dots)
simu <- do.call(RFsimulate,
args=c(list(model=all$krige, x=xx, grid=FALSE, n=n,
register = cond.reg, seed = NA), dots,
spConform=FALSE, examples_reduced = FALSE))
rm("xx")
if (is.vector(simu)) dim(simu) <- c(length(simu), 1)
simu.given <- do.call("[", c(list(simu, index, drop=FALSE),
as.list(rep(TRUE, length(dim(simu))-1))))
simu <- do.call("[", c(list(simu, 1:X$restotal, drop=FALSE),
as.list(rep(TRUE, length(dim(simu))-1))))
}
## Print("xx", simu, all$krige, mean(simu))
## to do: als Naeherung bei UK, OK:
## kriging(data, method="A") + simu - kriging(simu, method="O") !
d <- dim(data)
data <- as.vector(data) - simu.given
# Print(d, data, simu.given, length(simu.given) / prod(d))
dim(data) <- c(d, length(simu.given) / prod(d))
# Print(data)
stopifnot(length(X$y)==0, length(X$z)==0)
interpol <- RFinterpolate(x=X, model=model,
err.model = err.model,
register=MODEL_KRIGE,
given = coord,
data = data,
spConform=FALSE, ignore.trend = TRUE)
# Print(X, given, data, simu, interpol, index)
simu <- as.vector(simu) + as.vector(interpol)
dim(simu) <- c(if (X$grid) X$x[3,] else X$restotal,
if (vdim>1) vdim, if (n > 1) n)
simu <- RFboxcox(data=simu, boxcox = boxcox, inverse=TRUE, vdim=vdim)
if (all$imputing) {
return(FinishImputing(data=Z$data[[1]], simu=simu, Z=Z,
spConform=RFopt$general$spConform,
fillall = RFopt$krige$fillall))
}
attributes(simu)$varnames <- Z$varnames
attributes(simu)$coordnames <- Z$coordnames
## Print(simu)
## Print("endw")
return(simu)
}
|