1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
\name{Brown-Resnick-Specific}
\alias{BRmethods}
\alias{RPbrmixed}
\alias{RPbrorig}
\alias{RPbrshifted}
\alias{RPloggaussnormed}
\title{Simulation methods for Brown-Resnick processes}
\description{
These models define particular ways to simulate Brown-Resnick
processes.
}
\usage{
RPbrmixed(phi, tcf, xi, mu, s, meshsize, vertnumber, optim_mixed,
optim_mixed_tol,lambda, areamat, variobound)
RPbrorig(phi, tcf, xi, mu, s)
RPbrshifted(phi, tcf, xi, mu, s)
RPloggaussnormed(variogram, prob, optimize_p, nth, burn.in, rejection)
}
\arguments{
\item{phi,variogram}{object of class \code{\link[=RMmodel-class]{RMmodel}};
specifies the covariance model to be simulated.}
\item{tcf}{the extremal correlation function; either \code{phi} or
\code{tcf} must be given.}
\item{xi, mu, s}{the shape parameter, the location parameter and the
scale parameter, respectively, of the generalized extreme value
distribution. See Details.}
\item{lambda}{positive constant factor in the intensity of the Poisson
point process used in the M3 representation, cf. Thm. 6 and Remark 7
in Oesting et. al (2012); can be estimated by setting
\code{optim_mixed} if unknown. Default value is 1.}
\item{areamat}{vector of values in \eqn{[0,1]}. The value of the \eqn{k}{k}th
component represents the portion of processes whose maximum is located at a
distance \eqn{d} with \eqn{k-1 \leq d < k}{k-1 <= d < k} from the origin
taken into account for the simulation of the shape function in the M3
representation. \code{areamat} can be used for isotropic models only; can be
optimized by setting \code{optim_mixed} if unknown. Default value is 1.}
\item{meshsize, vertnumber, optim_mixed,
optim_mixed_tol, variobound}{further arguments
for simulation via the mixed moving maxima (M3) representation; see
\code{\link{RFoptions}}.}
\item{prob}{to do
}
\item{optimize_p}{to do
}
\item{nth}{to do
}
\item{burn.in}{to do
}
\item{rejection}{to do
}
}
\details{
The argument \code{xi} is always a number, i.e. \eqn{\xi} is constant
in space. In contrast, \eqn{\mu} and \eqn{s} might be constant
numerical values or given an \code{\link{RMmodel}}, in particular by an
\code{\link{RMtrend}} model.
The functions \code{RPbrorig}, \code{RPbrshifted} and \code{RPbrmixed}
simulate a Brown-Resnick process, which is defined by
\deqn{Z(x) = \max_{i=1}^\infty X_i \exp(W_i(x) - \gamma),
}{Z(x) = max_{i=1, 2, ...} X_i * exp(W_i(x) - gamma),}
where the \eqn{X_i} are the points of a Poisson point process on the
positive real half-axis with intensity \eqn{x^{-2} dx}{1/x^2 dx},
\eqn{W_i \sim W}{W_i ~ Y} are iid centered Gaussian processes with
stationary increments and variogram \eqn{\gamma}{gamma} given by
\code{model}. The functions correspond to the following ways of
simulation:
\describe{
\item{\code{RPbrorig}}{simulation using the original definition
(method 0 in Oesting et al., 2012)}
\item{\code{RPbrshifted}}{simulation using a random shift (similar to
method 1 and 2)}
\item{\code{RPbrmixed}}{simulation using M3 representation (method
4)}
}
}
\value{
The functions return an object of class
\code{\link[=RMmodel-class]{RMmodel}}.
}
\references{
\itemize{
\item Oesting, M., Kabluchko, Z. and Schlather M. (2012)
Simulation of {B}rown-{R}esnick Processes, \emph{Extremes},
\bold{15}, 89-107.
}}
\note{Advanced options for \code{RPbroriginal} and \code{RPbrshifted}
are \code{maxpoints} and \code{max_gauss}, see \command{\link{RFoptions}}.}
\author{\marco; \martin}
\examples{\dontshow{StartExample()}
#
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
% TO DO
## currently does not work
\dontshow{\dontrun{
model <- RPbrshifted(RMfbm(alpha=1.5), xi=0)
x <- 0:10
z <- RFsimulate(model=model, x=x, y=x, n=4)
plot(z)
}}
\dontshow{FinalizeExample()}
}
\seealso{
\command{\link{RPbrownresnick}},
\command{\link{RMmodel}},
\command{\link{RPgauss}},
\command{\link{maxstable}},
\command{\link{maxstableAdvanced}}.
}
\keyword{methods}
|