File: BRmethods.Rd

package info (click to toggle)
r-cran-randomfields 3.3.14-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,916 kB
  • sloc: cpp: 52,159; ansic: 3,015; makefile: 2; sh: 1
file content (143 lines) | stat: -rw-r--r-- 4,282 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
\name{Brown-Resnick-Specific}
\alias{BRmethods}
\alias{RPbrmixed}
\alias{RPbrorig}
\alias{RPbrshifted}
\alias{RPloggaussnormed}
\title{Simulation methods for Brown-Resnick processes}

\description{
 These models define particular ways to simulate Brown-Resnick
 processes.
 }

\usage{
RPbrmixed(phi, tcf, xi, mu, s, meshsize, vertnumber, optim_mixed,
          optim_mixed_tol,lambda, areamat, variobound) 

RPbrorig(phi, tcf, xi, mu, s)

RPbrshifted(phi, tcf, xi, mu, s)

RPloggaussnormed(variogram, prob, optimize_p, nth, burn.in, rejection)
}

\arguments{
 \item{phi,variogram}{object of class \code{\link[=RMmodel-class]{RMmodel}};
 specifies the covariance model to be simulated.}

 \item{tcf}{the extremal correlation function; either \code{phi} or
 \code{tcf} must be given.}

 \item{xi, mu, s}{the shape parameter, the location parameter and the
 scale parameter, respectively, of the generalized extreme value
 distribution. See Details.}

\item{lambda}{positive constant factor in the intensity of the Poisson
  point process used in the M3 representation, cf. Thm. 6 and Remark 7
  in Oesting et. al (2012); can be estimated by setting
  \code{optim_mixed} if unknown. Default value is 1.}

\item{areamat}{vector of values in \eqn{[0,1]}. The value of the \eqn{k}{k}th
  component represents the portion of processes whose maximum is located at a 
  distance \eqn{d} with \eqn{k-1 \leq d < k}{k-1 <= d < k} from the origin 
  taken into account for the simulation of the shape function in the M3 
  representation. \code{areamat} can be used for isotropic models only; can be 
  optimized by setting \code{optim_mixed} if unknown. Default value is 1.}
   
\item{meshsize, vertnumber, optim_mixed,
  optim_mixed_tol, variobound}{further arguments
  for simulation via the mixed moving maxima (M3) representation; see
  \code{\link{RFoptions}}.}

\item{prob}{to do
}

\item{optimize_p}{to do
}

\item{nth}{to do
}

\item{burn.in}{to do
}

\item{rejection}{to do
}

}

\details{
  The argument \code{xi} is always a number, i.e. \eqn{\xi} is constant
  in space. In contrast, \eqn{\mu} and \eqn{s} might be constant
  numerical values or given an \code{\link{RMmodel}}, in particular by an
  \code{\link{RMtrend}} model. 

  The functions \code{RPbrorig}, \code{RPbrshifted} and \code{RPbrmixed}
  simulate a Brown-Resnick process, which is defined by
  \deqn{Z(x) = \max_{i=1}^\infty X_i \exp(W_i(x) - \gamma),
  }{Z(x) = max_{i=1, 2, ...} X_i * exp(W_i(x) - gamma),}
 where the \eqn{X_i} are the points of a Poisson point process on the
 positive real half-axis with intensity \eqn{x^{-2} dx}{1/x^2 dx},
 \eqn{W_i \sim W}{W_i ~ Y} are iid centered Gaussian processes with
 stationary increments and variogram \eqn{\gamma}{gamma} given by
 \code{model}. The functions correspond to the following ways of
 simulation:
 \describe{
  \item{\code{RPbrorig}}{simulation using the original definition
  (method 0 in Oesting et al., 2012)}

  \item{\code{RPbrshifted}}{simulation using a random shift (similar to
  method 1 and 2)}
  
  \item{\code{RPbrmixed}}{simulation using M3 representation (method
  4)}
 }
}

\value{
 The functions return an object of class
 \code{\link[=RMmodel-class]{RMmodel}}.
}

\references{
 \itemize{
   \item  Oesting, M., Kabluchko, Z. and Schlather M. (2012)
   Simulation of {B}rown-{R}esnick Processes, \emph{Extremes},
   \bold{15}, 89-107.
 }}

 \note{Advanced options for \code{RPbroriginal} and \code{RPbrshifted}
   are \code{maxpoints} and \code{max_gauss}, see \command{\link{RFoptions}}.}
       
  
 \author{\marco; \martin}

 \examples{\dontshow{StartExample()}
#
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

% TO DO
## currently does not work

\dontshow{\dontrun{
model <- RPbrshifted(RMfbm(alpha=1.5), xi=0)
x <- 0:10
z <- RFsimulate(model=model, x=x, y=x, n=4)
plot(z)
}}

\dontshow{FinalizeExample()}

}

\seealso{
 \command{\link{RPbrownresnick}},
 \command{\link{RMmodel}},
 \command{\link{RPgauss}},
 \command{\link{maxstable}},
 \command{\link{maxstableAdvanced}}.
}

\keyword{methods}