1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
\name{Coordinate systems}
\alias{zenit}
\alias{Coordinate systems}
\alias{coordinate systems}
\alias{coordinate system}
\alias{coordinates}
\title{Coordinate systems}
\description{
Implemented Coordinate Systems.
}
\section{Implemented coordinate systems}{
\itemize{
\item Cartesian coordinate system
\item Earth coordinate systems\cr
The earth is considered as an ellipsoid;
The first angle takes values in \eqn{[0, 360)},
the second angle takes values in \eqn{[-90, 90]}.
\item Spherical coordinate systems\cr
The earth is considered as an ellipsoid;
The first angle takes values in \eqn{[0, 2\pi)},
the second angle takes values in \eqn{[-\pi/2, \pi/2]}.
}
}
\section{Transformations between the system}{
\itemize{
\item Earth to cartesian\cr
The 3-dimensional resulting coordinates
are either given in \sQuote{km} or in \sQuote{miles}.
\item Gnomonic and orthographic projections\cr
The 2-dimensional resulting coordinates
are either given in \sQuote{km} or in \sQuote{miles}.
The projection direction is given by the \code{zenit}.
\item Earth to spherical\cr
In this case the Earth is considered as a ball.
}
Cartesian systems cannot be transformed to earth or spherical
coordinate systems, nor a spherical system to earth coordinates.
}
\section{Options}{
\describe{
\item{\code{coord_system}}{character.
One of the values \code{"auto"}, \code{"cartesian"}, \code{"earth"}
% \code{"polar"}, \code{"cylindric"}, \code{"spherical"},
If \code{"auto"}, then the coordinates are considered as
\code{"cartesian"} except the names of the given coordinates
indicate a
different system. Currently, only \code{"longitude"} and
\code{"latidute"} (or abbreviations of them) are excepted
as names for given coordinates
and indicate an earth coordinate systems. See the examples below.
Default: \code{"auto"}
}
\item{\code{coordidx}}{integer vector of column numbers of the variables in
the data frame. \code{varidx} can be set alternatively to
\code{coordnames}.
This parameter gives the coordinate columns in a data frame
by starting column and ending column or the sequence.
An \code{NA} in the second component means
\sQuote{until the end}.
}
\item{\code{coordnames}}{vector of characters that can be set
alternatively to coordidx.
This parameter gives the coordinate columns in a data frame by names.
If it is \code{"NA"}, then, depending on the context, either
an error message is returned or it is assumed that the first
columns give the coordinates.
}
\item{\code{coordunits}}{any string.
If \code{coordinate_system = "earth"} and longitude and latitude
are transformed to 3d cartesian coordinates, \code{coordunits}
determines
whether the radius is given in kilometers (\code{"km"}) or miles
(\code{"miles"}).
If empty, then \code{"km"} is chosen.
Default: \code{""}
}
\item{\code{new_coord_system}}{
One of the values \code{"keep"}, \code{"cartesian"}, \code{"earth"},
\code{"plane"}.
% \code{"polar"}, \code{"cylindric"}, \code{"spherical"},
\enumerate{
\item \code{"keep"}\cr
The \code{coord_system} is kept (except an explicit transformation
is given, see \command{\link{RMtrafo}}.
Note that some classes of models, e.g. completely monotone
functions and compactly supported covariance models with
range less than \eqn{\pi} are valid models on a sphere.
In this case the models are considered as models on the sphere.
See \link{spherical models} for lists.
\item \code{"cartesian"}\cr
If \code{coord_system} is \code{"earth"} the coordinates are transformed
to cartesian coordinates before any model is considered.
\item \code{"orthographic"}, \code{"genomic"} \cr
If \code{coord_system} is \code{"earth"} the locations are projected
to a plane before any
model is considered.
}
Default: \code{"keep"}
}
\item{\code{new_coordunits}}{internal and should not be set by the user.
Default: \code{""}
}
\item{\code{polar_coord}}{logical.
If \code{FALSE} the spherical coordinates agree with
the earth coordinate parametrization, except that
radians are used for spherical coordinates instead
of degrees for the earth coordinates.
If \code{TRUE} the spherical coordinates signify polar coordinates.
Default : \code{FALSE}
}
\item{\code{varidx}}{integer vector of length 2.
\code{varidx} can be set alternatively to
\code{varnames}.
This parameter gives the data columns in a data frame, either
by starting column and ending column.
An \code{NA} in the second component means
\sQuote{until the end}.
}
\item{\code{varnames}}{vector of characters that can be set
alternatively to \code{varidx}. This parameter gives
the data columns in a data frame by names.
if \code{varnames} equals \code{"NA"}
then for keywords \sQuote{data},
\sQuote{value} and \sQuote{variable} will be searched for keywords.
If none of them are found, depending on the context, either
an error message is returned or it is assumed that the last
columns give the data.
}
\item{\code{varunits}}{vector of characters.
The default units of the variables.
Default: \code{""}
}
\item{\code{xyz_notation}}{logical or \code{NA}. Used by
\code{\link{RMuser}} only.
\code{NA} : automatic choice (if possible)
\code{FALSE} : notation (x, y) should not be understood as kernel definition, not as xyz notation
\code{TRUE}: xyz notation used
% \code{2}:this value is only used by calls of RFcov and should not
% be used by a user
}
\item{\code{zenit}}{two angles of the central
projection direction for the gnomonic projection
(\url{https://en.wikipedia.org/wiki/Gnomonic_projection},
\url{https://de.wikipedia.org/wiki/Gnomonische_Projektion})
and the orthographic projection,
(\url{https://en.wikipedia.org/wiki/Orthographic_projection_in_cartography},
\url{https://de.wikipedia.org/wiki/Orthografische_Azimutalprojektion}).
If \code{any(is.na(zenit))}
then either the value of either of the components may not be \code{NA},
whose value will be denoted by \eqn{p}.
If \eqn{p=1} then the mean of the locations is calculated;
if \eqn{p=Inf} then the mean of the range is calculated.
Default: \code{c(1, NA)}
}
}
}
\references{
Covariance models in a cartesian system
\itemize{
\item Schlather, M. (2011) Construction of covariance functions and
unconditional simulation of random fields. In Porcu, E., Montero, J.M.
and Schlather, M., \emph{Space-Time Processes and Challenges Related
to Environmental Problems.} New York: Springer.
}
Covariance models on a sphere
\itemize{
\item Gneiting, T. (2013) Strictly and non-strictly positive definite
functions on spheres.
\emph{Bernoulli}, \bold{19}, 1327-1349.
}
Tail correlation function
\itemize{
\item Strokorb, K., Ballani, F., and Schlather, M. (2014)
Tail correlation functions of max-stable processes: Construction
principles, recovery and diversity of some mixing max-stable
processes with identical TCF.
\emph{Extremes}, \bold{} Submitted.
}
}
\seealso{
\command{\link{RMtrafo}},
\command{\link{RFearth2cartesian}},
\command{\link{RPdirect}},
\command{\link[=spherical models]{models valid on a sphere}},
\command{\link{RFoptions}}.
}
\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
z <- 1:4
x <- cbind(z, 0)
y <- cbind(0, z)
model <- RMwhittle(nu=0.5)
RFcov(model, x, y, grid=FALSE) ## standard is (cartesian) model
## same as above, but explicit:
RFcov(model, x, y, grid=FALSE, coord_sys="cartesian")
## model is not valid on a sphere; x,y coordinates are
## transformed from earth coordinates to spherical coordinates
RFcov(model, x, y, grid=FALSE, coord_sys="earth")
## now the scale is chosen such that the covariance
## values are comparable to those in the cartesian case
RFcov(RMS(model, s= 1 / 180 * pi), x, y, grid=FALSE,
coord_sys="earth")
## projection onto a plane first. Then the scale is interpreted
## in the usual, i.e. cartesian, sense, i.e. the model does not
## really make sense
RFoptions(zenit = c(2.5, 2.5))
RFcov(model, x, y, grid=FALSE,
coord_sys="earth", new_coord_sys="orthographic")
## again, here the scale is chosen to be comparable to the cartesian case
## here the (standard) units are [km]
(z1 <- RFcov(RMS(model, s= 6350 / 180 * pi), x, y, grid=FALSE,
coord_sys="earth", new_coord_sys="orthographic"))
## as above, but in miles
(z2 <- RFcov(RMS(model, s= 6350 / 1.609344 / 180 * pi), x, y, grid=FALSE,
coord_sys="earth", new_coord_sys="orthographic",
new_coordunits="miles"))
stopifnot(all.equal(z1, z2))
## again, projection onto a plane first, but now using the
## gnomonic projection
## here the (standard) units are [km]
(z1 <- RFcov(RMS(model, s= 6350 / 180 * pi), x, y, grid=FALSE,
coord_sys="earth", new_coord_sys="gnomonic"))
## as above, but in miles
(z2 <- RFcov(RMS(model, s= 6350 / 1.609344 / 180 * pi), x, y, grid=FALSE,
coord_sys="earth", new_coord_sys="gnomonic",
new_coordunits="miles"))
stopifnot(all.equal(z1, z2, tol=1e-5))
\dontshow{FinalizeExample()}}
\keyword{spatial}
|