1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
\name{GaussianFields}
\alias{Gaussian}
\title{Methods for Gaussian Random Fields}
\description{
Here, all the methods (models) for simulating
Gaussian random fields are listed.
}
\section{Implemented models}{
\tabular{ll}{
\command{\link{RPcirculant}} \tab simulation by circulant embedding \cr
\command{\link{RPcutoff}} \tab simulation by a variant of circulant embedding \cr
\command{\link{RPcoins}} \tab simulation by random coin / shot noise
\cr
\command{\link{RPdirect}} \tab through the square root of the covariance matrix\cr
\command{\link{RPgauss}} \tab generic model that chooses automatically
among the specific methods
\cr
\command{\link{RPhyperplane}} \tab simulation by hyperplane tessellation \cr
\command{\link{RPintrinsic}} \tab simulation by a variant of circulant
embedding \cr
\command{\link{RPnugget}} \tab simulation of (anisotropic) nugget effects \cr
\command{\link{RPsequential}} \tab sequential method \cr
\command{\link{RPspecific}} \tab model specific methods (very advanced)\cr
\command{\link{RPspectral}} \tab spectral method \cr
\command{\link{RPtbm}} \tab turning bands \cr
}
}
\section{Computing demand for simulations}{
Assume at \eqn{n} locations in \eqn{d} dimensions a \eqn{v}-variate
field has to be simulated.
Let \deqn{f(n, d) = 2^d n \log(n)}{f(n, d) = 2^d * n * log(n)}
The following table gives in particular the time and memory needed for
the specific simulation method.
\tabular{lllllll}{
\tab grid \tab \eqn{v} \tab \eqn{d} \tab time \tab memory \tab comments\cr
\command{\link{RPcirculant}}
\tab yes \tab any \tab \eqn{\le 13}{<=13} \tab\eqn{O(v^3f(n, d))} \tab
\eqn{O(v^2f(n, d))}\tab \cr
\tab no \tab any \tab \eqn{\le 13}{<=13} \tab \eqn{O(v^3 f(k, d))} \tab \eqn{O(v^2f(k, d))}
\tab \eqn{k \sim }{k ~ }\command{\link[=RFoptions]{approx_step}}\eqn{{}^{-d}}{^{-d}}\cr
\command{\link{RPcutoff}} \tab \tab \tab \tab \tab \tab see
RPcirculant above
\cr
\command{\link{RPcoins}} \tab yes \tab \eqn{1} \tab \eqn{\le 4}{<=4} \tab \eqn{O(k
n)}{O(k * n)} \tab\eqn{ O(n) }\tab
\eqn{k \sim}{k ~ }\eqn{(lattice spacing)^{-d}} \cr
\tab no \tab \eqn{1} \tab \eqn{\le 4}{<=4} \tab \eqn{O(k n)}{O(k * n)} \tab
\eqn{O(n)} \tab \eqn{k} depends on the geometry
\cr
\command{\link{RPdirect}}
\tab any\tab any\tab any \tab\eqn{O(1)..O(v^2 n^2)}{ O(v^2 * n^2)}\tab\eqn{ O(v^2
n^2)}{ O(v^2 * n^2)}\tab effort to investigate the covariance matrix, if
\code{\link[=RFoptions]{matrix_methods}} is not specified (default)\cr
\tab \tab \tab \tab\eqn{O(v n)}{ O(v * n)}\tab\eqn{ O(v
n)}{ O(v * n)}\tab covariance matrix is diagonal \cr
\tab \tab \tab \tab see \pkg{\link[spam:SPAM]{spam}} \tab \eqn{O(z + v
n)}{O(z + v * n)}\tab covariance matrix is sparse
matrix with \eqn{z} non-zeros\cr
\tab\tab \tab \tab \eqn{O(v^3 n^3)}{O(v^3 * n^3)}\tab
\eqn{O(v^2 n^2)}{O(v^2*n^2)}\tab arbitrary covariance matrix (preparation) \cr
\tab\tab \tab \tab \eqn{O(v^2 n^2)}{O(v^2*n^2)}\tab
\eqn{O(v^2 n^2)}{O(v^2*n^2)}\tab arbitrary covariance matrix (simulation)\cr
\command{\link{RPgauss}} \tab any \tab any \tab any \tab \eqn{O(1)
\ldots O(v^3n^3)}{O(1)..O(v^3*n^3)} \tab
\eqn{O(1)\ldots O(n^2)}{O(1)..O(n^2)}\tab \bold{only} the selection
process; \eqn{O(1)} if first method tried is successful
\cr
\command{\link{RPhyperplane}} \tab any \tab \eqn{1} \tab \eqn{2} \tab
\eqn{O(n / s^d)} \tab \eqn{O(n / s^d)}\tab
\eqn{s = }\code{\link[=RMmodels]{scale}}\cr
\command{\link{RPintrinsic}} \tab \tab \tab \tab \tab \tab see
RPcirculant above\cr
\command{\link{RPnugget}} \tab any \tab any\tab any\tab \eqn{O(v n)}
\tab \eqn{O(v n)} \tab\cr
\command{\link{RPsequential}} \tab any\tab \eqn{1} \tab any \tab
\eqn{O(S^3 b^3)}{O(S^3 * b^3)}
\tab
\eqn{O(S^2 b^2)}{O(S^2*b^2)}
\tab
\eqn{n=ST}{n = S * T};
\eqn{S} and \eqn{T} the number of spatial and temporal locations,
respectively; \eqn{b = }\code{\link[=RPsequential]{back_steps}} (preparation) \cr
\tab \tab \tab \tab
\eqn{O(n S b^2)}{O(n * S * b^2)}
\tab
\eqn{O(S^2 b^2) + O(n)}{O(n)}
\tab (simulation) \cr
\command{\link{RPspectral}} \tab any \tab \eqn{1} \tab \eqn{\le 2}{<=2}
\tab\eqn{O(C(d) n)}{O(C(d) * n)}
\tab \eqn{ O(n) }\tab \eqn{C(d)} : large constant increasing in \eqn{d} \cr
\command{\link{RPtbm}} \tab any \tab \eqn{1} \tab \eqn{\le 4}{<=4} \tab
\eqn{ O(C(d) (n + L) }{ O(C(d) * (n + L))} \tab\eqn{ O(n + L)} \tab\eqn{C(d)} :
large constant increasing in \eqn{d}; \eqn{L} is the effort needed to
simulate on a line (or plane)\cr
\command{\link{RPspecific}} \tab \tab \tab \tab \tab \tab \bold{only}
the specific part \cr
* * \command{\link{RMplus}}\tab any \tab any \tab any \tab O(v n) \tab
O(v n) \tab\cr
* * \command{\link{RMS}}\tab any \tab any \tab any \tab O(1) \tab O(v n) \tab\cr
* * \command{\link{RMmult}}\tab any \tab any \tab any \tab O(v n) \tab
O(v n) \tab\cr
}
}
\section{Computing demand for interpolation}{
Assume \eqn{v}-variate data are given at
\eqn{n} locations in \eqn{d} dimensions.
To interpolate at \eqn{k} locations RandomFields needs
\tabular{lllllll}{
grid \tab \eqn{v} \tab \eqn{d} \tab time \tab memory \tab comments\cr
any\tab any\tab any \tab \eqn{O(1)..O(v^2 n^2)}{ O(v^2 * n^2)}\tab\eqn{ O(v^2
n^2)}{ O(v^2 * n^2)}\tab effort to investigate the covariance matrix, if
\code{\link[=RFoptions]{matrix_methods}} is not specified (default)
\cr
\tab \tab \tab\eqn{O(v ^2 n k)}{ O(v^2 * n k)}\tab\eqn{ O(v
(n + k))}{ O(v * (n + k))}\tab covariance matrix is diagonal
\cr
\tab \tab \tab see \pkg{\link[spam:SPAM]{spam}}+ O(v^2nk) \tab \eqn{O(z + v
(n + k))}{O(z + v * (n + k))}\tab covariance matrix is sparse
matrix with \eqn{z} non-zeros\cr
\tab \tab \tab \eqn{O(v^3 n^3 + v^2nk)}{O(v^3*n^3 + v^2*n*k)}\tab
\eqn{O(v^2 n^2 + v*k)}{O(v^2*n^2 + v*k)}\tab arbitrary covariance matrix
}
}
\section{Computing demand for conditional simulation}{
Assume \eqn{v}-variate data are given at
\eqn{n} locations \eqn{x_1,\ldots, x_n}{x_1,...,x_n} in \eqn{d} dimensions.
To conditionally simulate at \eqn{k} locations
\eqn{y_1,\ldots, y_k}{y_1,...,y_k}, the
computing demand equals the
sum of the demand for interpolating and
the demand for simulating on the \eqn{k+n} locations.
(Grid algorithms for simulating will apply if the \eqn{k} locations
\eqn{y_1,\ldots, y_k}{y_1,...,y_k}
are defined by a grid and the \eqn{n} locations
\eqn{x_1,\ldots, x_n}{x_1,...,x_n} are a subset of
\eqn{y_1,\ldots, y_k}{y_1,...,y_k}, a situation typical in image analysis.)
}
\references{
\itemize{
\item Chiles, J.-P. and Delfiner, P. (1999)
\emph{Geostatistics. Modeling Spatial Uncertainty.}
New York: Wiley.
% \item Gneiting, T. and Schlather, M. (2004)
% Statistical modeling with covariance functions.
% \emph{In preparation.}
\item Schlather, M. (1999) \emph{An introduction to positive definite
functions and to unconditional simulation of random fields.}
Technical report ST 99-10, Dept. of Maths and Statistics,
Lancaster University.
\item Schlather, M. (2010)
On some covariance models based on normal scale mixtures.
\emph{Bernoulli}, \bold{16}, 780-797.
\item Schlather, M. (2011) Construction of covariance functions and
unconditional simulation of random fields. In Porcu, E., Montero, J.M.
and Schlather, M., \emph{Space-Time Processes and Challenges Related
to Environmental Problems.} New York: Springer.
% \item Schlather, M. (2002) Models for stationary max-stable
% random fields. \emph{Extremes} \bold{5}, 33-44.
\item Yaglom, A.M. (1987) \emph{Correlation Theory of Stationary and
Related Random Functions I, Basic Results.}
New York: Springer.
\item Wackernagel, H. (2003) \emph{Multivariate Geostatistics.} Berlin:
Springer, 3nd edition.
}
}
\seealso{
\link{RP},
\command{\link{Other models}},
\command{\link{RMmodel}},
\command{\link{RFgetMethodNames}},
\command{\link{RFsimulateAdvanced}}.
}
\me
\keyword{spatial}
\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
set.seed(1)
x <- runif(90, 0, 500)
z <- RFsimulate(RMspheric(), x)
z <- RFsimulate(RMspheric(), x, max_variab=10000)
\dontshow{FinalizeExample()}}
|