File: GaussianFields.Rd

package info (click to toggle)
r-cran-randomfields 3.3.14-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,916 kB
  • sloc: cpp: 52,159; ansic: 3,015; makefile: 2; sh: 1
file content (201 lines) | stat: -rw-r--r-- 8,492 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
\name{GaussianFields}
\alias{Gaussian}
\title{Methods for Gaussian Random Fields}
\description{
  Here, all the methods (models) for simulating
  Gaussian random fields are listed.
}
\section{Implemented models}{
  \tabular{ll}{
 \command{\link{RPcirculant}} \tab simulation by circulant embedding \cr
 \command{\link{RPcutoff}} \tab simulation by a variant of circulant embedding \cr
 \command{\link{RPcoins}} \tab simulation by random coin / shot noise
 \cr
 \command{\link{RPdirect}} \tab through the square root of the covariance matrix\cr
 \command{\link{RPgauss}} \tab generic model that chooses automatically
 among the specific methods
 \cr
 \command{\link{RPhyperplane}} \tab simulation by hyperplane tessellation \cr
 \command{\link{RPintrinsic}} \tab simulation by a variant of circulant
 embedding \cr 
 \command{\link{RPnugget}} \tab simulation of (anisotropic) nugget effects \cr
 \command{\link{RPsequential}} \tab sequential method \cr
 \command{\link{RPspecific}} \tab model specific methods (very advanced)\cr
 \command{\link{RPspectral}} \tab spectral method \cr
 \command{\link{RPtbm}} \tab turning bands \cr
}
}


\section{Computing demand for simulations}{
  Assume at \eqn{n} locations in \eqn{d} dimensions a \eqn{v}-variate
  field has to be simulated.
  Let \deqn{f(n, d) = 2^d  n \log(n)}{f(n, d) = 2^d * n * log(n)}
  The following table gives in particular the time and memory needed for
  the specific simulation method.
\tabular{lllllll}{
  \tab grid \tab \eqn{v} \tab \eqn{d} \tab time \tab memory \tab comments\cr
  \command{\link{RPcirculant}}
  \tab yes \tab any \tab \eqn{\le 13}{<=13} \tab\eqn{O(v^3f(n, d))} \tab
  \eqn{O(v^2f(n, d))}\tab \cr
  \tab no \tab any \tab \eqn{\le 13}{<=13} \tab \eqn{O(v^3 f(k, d))} \tab \eqn{O(v^2f(k, d))}
  \tab \eqn{k \sim }{k ~ }\command{\link[=RFoptions]{approx_step}}\eqn{{}^{-d}}{^{-d}}\cr
 \command{\link{RPcutoff}} \tab \tab \tab \tab \tab \tab see
  RPcirculant above
 \cr
 \command{\link{RPcoins}} \tab yes \tab \eqn{1} \tab \eqn{\le 4}{<=4} \tab \eqn{O(k
  n)}{O(k * n)} \tab\eqn{ O(n) }\tab
 \eqn{k \sim}{k ~ }\eqn{(lattice spacing)^{-d}} \cr
 \tab no \tab \eqn{1} \tab \eqn{\le 4}{<=4} \tab \eqn{O(k n)}{O(k * n)} \tab
  \eqn{O(n)} \tab \eqn{k} depends on the geometry
 \cr
 \command{\link{RPdirect}}
 \tab any\tab any\tab any \tab\eqn{O(1)..O(v^2 n^2)}{ O(v^2 * n^2)}\tab\eqn{ O(v^2
   n^2)}{ O(v^2 * n^2)}\tab effort to investigate the covariance matrix, if
 \code{\link[=RFoptions]{matrix_methods}} is not specified (default)\cr
 \tab \tab \tab  \tab\eqn{O(v n)}{ O(v * n)}\tab\eqn{ O(v
  n)}{ O(v * n)}\tab covariance matrix is diagonal \cr
 \tab \tab \tab  \tab see \pkg{\link[spam:SPAM]{spam}} \tab \eqn{O(z + v
  n)}{O(z + v * n)}\tab covariance matrix is sparse
 matrix with \eqn{z} non-zeros\cr
 \tab\tab \tab  \tab \eqn{O(v^3 n^3)}{O(v^3 * n^3)}\tab
  \eqn{O(v^2 n^2)}{O(v^2*n^2)}\tab arbitrary covariance matrix (preparation) \cr
  \tab\tab \tab  \tab \eqn{O(v^2 n^2)}{O(v^2*n^2)}\tab
  \eqn{O(v^2 n^2)}{O(v^2*n^2)}\tab arbitrary covariance matrix (simulation)\cr
 \command{\link{RPgauss}} \tab any \tab any \tab any \tab \eqn{O(1)
  \ldots O(v^3n^3)}{O(1)..O(v^3*n^3)} \tab
 \eqn{O(1)\ldots O(n^2)}{O(1)..O(n^2)}\tab \bold{only} the selection
 process; \eqn{O(1)} if first method tried is successful
 \cr
 \command{\link{RPhyperplane}} \tab any \tab \eqn{1} \tab \eqn{2} \tab
 \eqn{O(n / s^d)} \tab \eqn{O(n / s^d)}\tab
 \eqn{s = }\code{\link[=RMmodels]{scale}}\cr
 \command{\link{RPintrinsic}} \tab  \tab \tab \tab \tab \tab see
  RPcirculant above\cr 
 \command{\link{RPnugget}} \tab any  \tab any\tab any\tab \eqn{O(v n)}
  \tab \eqn{O(v n)} \tab\cr
 \command{\link{RPsequential}} \tab any\tab \eqn{1} \tab any \tab
 \eqn{O(S^3 b^3)}{O(S^3 * b^3)}
 \tab
 \eqn{O(S^2 b^2)}{O(S^2*b^2)}
 \tab
 \eqn{n=ST}{n = S * T};
 \eqn{S} and \eqn{T} the number of spatial and temporal locations,
  respectively; \eqn{b = }\code{\link[=RPsequential]{back_steps}} (preparation) \cr
 \tab \tab  \tab  \tab
 \eqn{O(n S b^2)}{O(n * S * b^2)}
 \tab
 \eqn{O(S^2 b^2) + O(n)}{O(n)} 
 \tab (simulation) \cr
 \command{\link{RPspectral}} \tab any \tab \eqn{1} \tab \eqn{\le 2}{<=2}
  \tab\eqn{O(C(d) n)}{O(C(d) * n)}
 \tab \eqn{ O(n) }\tab  \eqn{C(d)} : large constant increasing in \eqn{d} \cr
 \command{\link{RPtbm}} \tab any \tab \eqn{1} \tab \eqn{\le 4}{<=4} \tab
  \eqn{ O(C(d) (n + L) }{ O(C(d) * (n + L))} \tab\eqn{ O(n + L)}  \tab\eqn{C(d)} :
  large constant increasing in \eqn{d}; \eqn{L} is the effort needed to
  simulate on a line (or plane)\cr
 \command{\link{RPspecific}}  \tab \tab \tab \tab \tab \tab \bold{only}
  the specific part \cr
 * * \command{\link{RMplus}}\tab any \tab any \tab any \tab O(v n) \tab
  O(v n) \tab\cr
 * * \command{\link{RMS}}\tab any \tab any \tab any  \tab O(1) \tab O(v n) \tab\cr
 * * \command{\link{RMmult}}\tab any \tab any \tab any  \tab O(v n) \tab
  O(v n) \tab\cr
}
}



\section{Computing demand for interpolation}{
  Assume \eqn{v}-variate data are given at 
  \eqn{n} locations in \eqn{d} dimensions.
  To interpolate at \eqn{k} locations RandomFields needs
\tabular{lllllll}{
  grid \tab \eqn{v} \tab \eqn{d} \tab time \tab memory \tab comments\cr
  any\tab any\tab any \tab \eqn{O(1)..O(v^2 n^2)}{ O(v^2 * n^2)}\tab\eqn{ O(v^2
   n^2)}{ O(v^2 * n^2)}\tab effort to investigate the covariance matrix, if
 \code{\link[=RFoptions]{matrix_methods}} is not specified (default)
 \cr
  \tab \tab  \tab\eqn{O(v ^2 n k)}{ O(v^2 * n k)}\tab\eqn{ O(v
    (n + k))}{ O(v * (n + k))}\tab covariance matrix is diagonal
  \cr
  \tab \tab  \tab see \pkg{\link[spam:SPAM]{spam}}+ O(v^2nk) \tab \eqn{O(z + v
  (n + k))}{O(z + v * (n + k))}\tab covariance matrix is sparse
 matrix with \eqn{z} non-zeros\cr
 \tab \tab  \tab \eqn{O(v^3 n^3 + v^2nk)}{O(v^3*n^3 + v^2*n*k)}\tab
 \eqn{O(v^2 n^2 + v*k)}{O(v^2*n^2 + v*k)}\tab arbitrary covariance matrix
}
}



\section{Computing demand for conditional simulation}{
  Assume \eqn{v}-variate data are given at 
  \eqn{n} locations \eqn{x_1,\ldots, x_n}{x_1,...,x_n} in \eqn{d} dimensions.
  To conditionally simulate at \eqn{k} locations
  \eqn{y_1,\ldots, y_k}{y_1,...,y_k}, the
  computing demand equals the
  sum of the demand for interpolating and
  the demand for simulating on the \eqn{k+n} locations.
  (Grid algorithms for simulating will apply if the \eqn{k} locations
  \eqn{y_1,\ldots, y_k}{y_1,...,y_k}
  are defined by a grid and the \eqn{n} locations
  \eqn{x_1,\ldots, x_n}{x_1,...,x_n} are a subset of
  \eqn{y_1,\ldots, y_k}{y_1,...,y_k}, a situation typical in image analysis.)
}
 


\references{
 \itemize{
 \item Chiles, J.-P. and Delfiner, P. (1999)
 \emph{Geostatistics. Modeling Spatial Uncertainty.}
 New York: Wiley.
 % \item Gneiting, T. and Schlather, M. (2004)
 % Statistical modeling with covariance functions.
 % \emph{In preparation.}
 \item Schlather, M. (1999) \emph{An introduction to positive definite
 functions and to unconditional simulation of random fields.}
 Technical report ST 99-10, Dept. of Maths and Statistics,
 Lancaster University.
 
 \item Schlather, M. (2010)
 On some covariance models based on normal scale mixtures.
 \emph{Bernoulli}, \bold{16}, 780-797.
 
 \item Schlather, M. (2011) Construction of covariance functions and
 unconditional simulation of random fields. In Porcu, E., Montero, J.M.
 and Schlather, M., \emph{Space-Time Processes and Challenges Related
 to Environmental Problems.} New York: Springer.
 % \item Schlather, M. (2002) Models for stationary max-stable
 % random fields. \emph{Extremes} \bold{5}, 33-44.
 \item Yaglom, A.M. (1987) \emph{Correlation Theory of Stationary and
 Related Random Functions I, Basic Results.}
 New York: Springer.
 \item Wackernagel, H. (2003) \emph{Multivariate Geostatistics.} Berlin:
 Springer, 3nd edition.
 }
}
\seealso{
   \link{RP},
  \command{\link{Other models}},
  \command{\link{RMmodel}},
  \command{\link{RFgetMethodNames}},
  \command{\link{RFsimulateAdvanced}}.
}


\me

\keyword{spatial}

\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

set.seed(1)
x <- runif(90, 0, 500)
z <- RFsimulate(RMspheric(), x)
z <- RFsimulate(RMspheric(), x, max_variab=10000)
\dontshow{FinalizeExample()}}