1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
\name{RFcov}
\alias{RFcov}
\title{(Cross-)Covariance function}
\description{
Calculates both the empirical and the theoretical (cross-)covariance function.
}
\usage{
RFcov(model, x, y = NULL, z = NULL, T=NULL, grid, params, distances, dim, ...,
data, bin=NULL, phi=NULL, theta = NULL, deltaT = NULL, vdim=NULL)
}
\arguments{
\item{model,params}{\argModel }
\item{x}{\argX}
\item{y,z}{\argYz}
\item{T}{\argT}
\item{grid}{\argGrid}
\item{data}{\argData}
\item{bin}{\argBin}
\item{phi}{\argPhi}
\item{theta}{\argTheta}
\item{deltaT}{\argDeltaT}
\item{distances,dim}{\argDistances}
\item{vdim}{\argVdim}
\item{...}{\argDots}
}
\details{ \command{\link{RFcov}} computes the empirical
cross-covariance function for given (multivariate) spatial data.
The empirical
(cross-)covariance function of two random fields \eqn{X}{X} and \eqn{Y}{Y} is given by
\deqn{\gamma(r):=\frac{1}{N(r)} \sum_{(t_{i},t_{j})|t_{i,j}=r}
(X(t_{i})Y(t_{j})) - m_{X} m_{Y}}{\gamma(r):=1/N(r)
\sum_{(t_{i},t_{j})|t_{i,j}=r} (X(t_{i})Y(t_{j})) - m_{X} m_{Y}}
where \eqn{t_{i,j}:=t_{i}-t_{j}}{t_{i,j}:=t_{i}-t_{j}}, \eqn{N(r)}{N(r)}
denotes the number of pairs of data points with distancevector
\eqn{t_{i,j}=r}{t_{i,j}=r} and where
\eqn{m_{X} := \frac{1}{N(r)} \sum_{(t_{i},t_{j})|t_{i,j}=r}
X_{t_{i}}}{m_{X} := \frac{1}{N(r)} \sum_{(t_{i},t_{j})|t_{i,j}=r}
X_{t_{i}}} and \eqn{m_{Y} := \frac{1}{N(r)} \sum_{(t_{i},t_{j})|t_{i,j}=r}
Y_{t_{i}}}{m_{Y} := 1/N(r) \sum_{(t_{i},t_{j})|t_{i,j}=r}
Y_{t_{i}}} denotes the mean of data points with distancevector
\eqn{t_{i,j}=r}{t_{i,j}=r}.
The spatial coordinates \code{x}, \code{y}, \code{z}
should be vectors. For random fields of
spatial dimension \eqn{d > 3} write all vectors as columns of matrix x. In
this case do neither use y, nor z and write the columns in
\code{gridtriple} notation.
If the data is spatially located on a grid a fast algorithm based on
the fast Fourier transformed (fft) will be used.
As advanced option the calculation method can also be changed for grid
data (see \command{\link{RFoptions}}.)
It is also possible to use \command{\link{RFcov}} to calculate
the pseudocovariance function (see \command{\link{RFoptions}}).
}
\value{
\command{\link{RFcov}} returns objects of class
\command{\link[=RFempVariog-class]{RFempVariog}}.
}
\references{
Gelfand, A. E., Diggle, P., Fuentes, M. and Guttorp,
P. (eds.) (2010) \emph{Handbook of Spatial Statistics.}
Boca Raton: Chapman & Hall/CRL.
Stein, M. L. (1999) \emph{Interpolation of Spatial Data.}
New York: Springer-Verlag
}
\author{Jonas Auel; Sebastian Engelke; Johannes Martini; \martin}
\seealso{
\command{\link{RFvariogram}},
\command{\link{RFmadogram}},
\command{\link{RMstable}},
\command{\link{RMmodel}},
\command{\link{RFsimulate}},
\command{\link{RFfit}}.
}
\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
n <- 1 ## use n <- 2 for better results
## isotropic model
model <- RMexp()
x <- seq(0, 10, 0.02)
z <- RFsimulate(model, x=x, n=n)
emp.vario <- RFcov(data=z)
plot(emp.vario, model=model)
## anisotropic model
model <- RMexp(Aniso=cbind(c(2,1), c(1,1)))
x <- seq(0, 10, 0.05)
z <- RFsimulate(model, x=x, y=x, n=n)
emp.vario <- RFcov(data=z, phi=4)
plot(emp.vario, model=model)
## space-time model
model <- RMnsst(phi=RMexp(), psi=RMfbm(alpha=1), delta=2)
x <- seq(0, 10, 0.05)
T <- c(0, 0.1, 100)
z <- RFsimulate(x=x, T=T, model=model, n=n)
emp.vario <- RFcov(data=z, deltaT=c(10, 1))
plot(emp.vario, model=model, nmax.T=3)
## multivariate model
model <- RMbiwm(nudiag=c(1, 2), nured=1, rhored=1, cdiag=c(1, 5),
s=c(1, 1, 2))
x <- seq(0, 20, 0.1)
z <- RFsimulate(model, x=x, y=x, n=n)
emp.vario <- RFcov(data=z)
plot(emp.vario, model=model)
## multivariate and anisotropic model
model <- RMbiwm(A=matrix(c(1,1,1,2), nc=2),
nudiag=c(0.5,2), s=c(3, 1, 2), c=c(1, 0, 1))
x <- seq(0, 20, 0.1)
dta <- RFsimulate(model, x, x, n=n)
ev <- RFcov(data=dta, phi=4)
plot(ev, model=model, boundaries=FALSE)
\dontshow{\dontrun{
######################################################
# NOTE: distinguish the different uses of x and y
x <- c(1,2,1)
y <- c(4,5,6)
# coordinate space 1-dimensional, evaluated at 3 points:
RFcov(model=model, x=as.matrix(x), y=as.matrix(y))
# coordinate space is 3-dimensional, evaluated at a pair of points
RFcov(model=model, x=t(x), y=t(y))
}}
\dontshow{FinalizeExample()}}
\keyword{spatial}
\keyword{models}
|