File: RFcov.Rd

package info (click to toggle)
r-cran-randomfields 3.3.14-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,916 kB
  • sloc: cpp: 52,159; ansic: 3,015; makefile: 2; sh: 1
file content (147 lines) | stat: -rw-r--r-- 4,732 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
\name{RFcov}
\alias{RFcov}
\title{(Cross-)Covariance function}
\description{
 Calculates both the empirical and the theoretical (cross-)covariance function.
}
\usage{
RFcov(model, x, y = NULL, z = NULL, T=NULL, grid, params, distances, dim, ...,
      data, bin=NULL, phi=NULL, theta = NULL, deltaT = NULL, vdim=NULL)
}
\arguments{
  \item{model,params}{\argModel }
 \item{x}{\argX}
 \item{y,z}{\argYz}
 \item{T}{\argT}
 \item{grid}{\argGrid}
 \item{data}{\argData}
 \item{bin}{\argBin}
 \item{phi}{\argPhi} 
 \item{theta}{\argTheta} 
 \item{deltaT}{\argDeltaT}
 \item{distances,dim}{\argDistances}
 \item{vdim}{\argVdim}
 \item{...}{\argDots}
}
\details{ \command{\link{RFcov}} computes the empirical
 cross-covariance function for given (multivariate) spatial data. 

 The empirical
 (cross-)covariance function of two random fields \eqn{X}{X} and \eqn{Y}{Y} is given by 
 \deqn{\gamma(r):=\frac{1}{N(r)} \sum_{(t_{i},t_{j})|t_{i,j}=r}
   (X(t_{i})Y(t_{j})) - m_{X} m_{Y}}{\gamma(r):=1/N(r)
   \sum_{(t_{i},t_{j})|t_{i,j}=r} (X(t_{i})Y(t_{j})) - m_{X} m_{Y}}
where \eqn{t_{i,j}:=t_{i}-t_{j}}{t_{i,j}:=t_{i}-t_{j}}, \eqn{N(r)}{N(r)}
denotes the number of pairs of data points with distancevector
\eqn{t_{i,j}=r}{t_{i,j}=r} and where
\eqn{m_{X} := \frac{1}{N(r)} \sum_{(t_{i},t_{j})|t_{i,j}=r}
  X_{t_{i}}}{m_{X} := \frac{1}{N(r)} \sum_{(t_{i},t_{j})|t_{i,j}=r}
  X_{t_{i}}} and \eqn{m_{Y} := \frac{1}{N(r)} \sum_{(t_{i},t_{j})|t_{i,j}=r}
  Y_{t_{i}}}{m_{Y} := 1/N(r) \sum_{(t_{i},t_{j})|t_{i,j}=r}
  Y_{t_{i}}} denotes the mean of data points with distancevector
\eqn{t_{i,j}=r}{t_{i,j}=r}.

 The spatial coordinates \code{x}, \code{y}, \code{z}
   should be vectors. For random fields of
 spatial dimension \eqn{d > 3} write all vectors as columns of matrix x. In
 this case do neither use y, nor z and write the columns in
 \code{gridtriple} notation.

 If the data is spatially located on a grid a fast algorithm based on
 the fast Fourier transformed (fft) will be used.
 As advanced option the calculation method can also be changed for grid
 data (see \command{\link{RFoptions}}.)
 
 It is also possible to use \command{\link{RFcov}} to calculate
 the pseudocovariance function (see \command{\link{RFoptions}}).

}
\value{
 \command{\link{RFcov}} returns objects of class
 \command{\link[=RFempVariog-class]{RFempVariog}}. 
}
\references{
 Gelfand, A. E., Diggle, P., Fuentes, M. and Guttorp,
 P. (eds.) (2010) \emph{Handbook of Spatial Statistics.}
 Boca Raton: Chapman & Hall/CRL.

 Stein, M. L. (1999) \emph{Interpolation of Spatial Data.}
 New York: Springer-Verlag 
 }


 \author{Jonas Auel; Sebastian Engelke; Johannes Martini; \martin}
 
\seealso{
  \command{\link{RFvariogram}},
  \command{\link{RFmadogram}},
 \command{\link{RMstable}},
 \command{\link{RMmodel}},
 \command{\link{RFsimulate}},
 \command{\link{RFfit}}.
}

\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

n <- 1 ## use n <- 2 for better results

## isotropic model
model <- RMexp()
x <- seq(0, 10, 0.02)
z <- RFsimulate(model, x=x, n=n)
emp.vario <- RFcov(data=z)
plot(emp.vario, model=model)


## anisotropic model
model <- RMexp(Aniso=cbind(c(2,1), c(1,1)))
x <- seq(0, 10, 0.05)
z <- RFsimulate(model, x=x, y=x, n=n)
emp.vario <- RFcov(data=z, phi=4)
plot(emp.vario, model=model)


## space-time model
model <- RMnsst(phi=RMexp(), psi=RMfbm(alpha=1), delta=2)
x <- seq(0, 10, 0.05)
T <- c(0, 0.1, 100)
z <- RFsimulate(x=x, T=T, model=model, n=n)
emp.vario <- RFcov(data=z, deltaT=c(10, 1))
plot(emp.vario, model=model, nmax.T=3)


## multivariate model
model <- RMbiwm(nudiag=c(1, 2), nured=1, rhored=1, cdiag=c(1, 5), 
                s=c(1, 1, 2))
x <- seq(0, 20, 0.1)
z <- RFsimulate(model, x=x, y=x, n=n)
emp.vario <- RFcov(data=z)
plot(emp.vario, model=model)


## multivariate and anisotropic model
model <- RMbiwm(A=matrix(c(1,1,1,2), nc=2),
                nudiag=c(0.5,2), s=c(3, 1, 2), c=c(1, 0, 1))
x <- seq(0, 20, 0.1)
dta <- RFsimulate(model, x, x, n=n)
ev <- RFcov(data=dta, phi=4)
plot(ev, model=model, boundaries=FALSE)


\dontshow{\dontrun{
######################################################
# NOTE: distinguish the different uses of x and y
x <- c(1,2,1)
y <- c(4,5,6)
# coordinate space 1-dimensional, evaluated at 3 points:
RFcov(model=model, x=as.matrix(x), y=as.matrix(y))
# coordinate space is 3-dimensional, evaluated at a pair of points
RFcov(model=model, x=t(x), y=t(y))
}}

\dontshow{FinalizeExample()}}

\keyword{spatial}
\keyword{models}