File: RFcrossvalidate.Rd

package info (click to toggle)
r-cran-randomfields 3.3.14-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,916 kB
  • sloc: cpp: 52,159; ansic: 3,015; makefile: 2; sh: 1
file content (155 lines) | stat: -rw-r--r-- 4,769 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
\name{RFcrossvalidate}
\alias{RFcrossvalidate}
\alias{print.crossvalidate}
\alias{summary.crossvalidate}
\alias{print.summary.crossvalidate}
%\alias{mleRF}% obsolete
\alias{RFcrossvalidate.default}
\title{Fitting model parameters to spatial data (regionalised variables)
  and to linear (mixed) models}
\description{
  The function estimates arbitrary parameters of
  a random field specification with various methods.
  Currently, the models to be fitted can be
  \itemize{
    \item{\link[=RPgauss]{Gaussian random fields}}
    \item{\link[=RFformula]{linear models}}
  }
  The fitting of max-stable random fields and others
  has not been implemented yet.
}
\usage{
RFcrossvalidate(model, x, y=NULL, z=NULL, T=NULL, grid=NULL, data,
                params, lower=NULL, upper=NULL, method="ml",
                users.guess=NULL, distances=NULL, dim, optim.control=NULL,
                transform=NULL, full = FALSE, ...)
}
\arguments{
  \item{model,params}{\argModel }
 \item{x}{\argX}
 \item{y,z}{\argYz}
 \item{T}{\argT}
 \item{grid}{\argGrid}
 \item{data}{\argData}
 \item{lower}{\argLower}
 \item{upper}{\argUpper}
 \item{method}{
   Single method to be used for estimating, either
   one of the \code{methods} or one of the \code{sub.methods}
   see \command{\link{RFfit}}
 }
 \item{users.guess}{\argUsersguess}
 \item{distances,dim}{\argDistances}
 \item{optim.control}{\argOptimcontrol}
 \item{transform}{\argTransform}
  \item{full}{logical.
   If \code{TRUE} then cross-validation is also performed
   for intermediate models used in
   \code{RFfit} (if any).
 }
 \item{...}{\argDots}
}
 
\section{Methods}{
 \describe{
   \item{print}{prints the summary}
   \item{summary}{gives a summary}
 }
}

\note{
  An important option is \code{cross_refit} that determines
  whether the model is refitted for each location left out.
  Default is \code{FALSE}. See also \command{\link{RFoptions}}.
}


\value{
  An object of the \code{\link{class}} \code{"RFcrossvalidate"} which is
  a list with the following components, cf. \command{xvalid} in the
  package \pkg{geoR} :
  \item{data}{the original data.  }
  \item{predicted}{the values predicted by cross-validation.  }
  \item{krige.var}{the cross-validation prediction variance.  }
  \item{error}{the differences \code{data - predicted value}.   }
  \item{std.error}{the errors divided by the square root of the
    prediction variances.  }
  \item{p}{
    In contrast to \pkg{geoR} the p-value is returned,
    i.e. the probability
    that a difference with absolute value larger than the absolute
    value of the actual difference is observed.


    A method for \code{summary} returns summary statistics for the errors
    and standard errors similar to \pkg{geoR}.
  
    If \code{cross_refit = TRUE} and \code{detailed_output = TRUE}
    the returned object also contains a \code{fitted} which is
    a list of fitted models.
  }
}

\references{
  \itemize{
    \item Ribeiro, P.J., Jr. and Diggle, P.J (2014) R package \pkg{geoR}.
    
    \item Burnham, K. P. and Anderson, D. R. (2002)
    \emph{Model selection and Multi-Model Inference: A Practical
      Information-Theoretic Approach.}
    2nd edition. New York: Springer.
 }
}

\me

\note{This function does not depend on the value of
 \command{\link{RFoptions}}\code{()$PracticalRange}. 
 The function \code{RFcrossvalidate} always uses the standard specification
 of the covariance model as given in \command{\link{RMmodel}}.
}
\seealso{
  \command{\link{RFratiotest}}
  \command{\link{RFfit}}
  \command{\link{RMmodel}},
  \code{\link[=RandomFields-package]{RandomFields}},
  \command{\link{weather}}.
}
\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

% options(error=recover)
% source("RandomFields/tests/source.R")

## currently disabled!

\dontshow{\dontrun{

## See also  papers.jss14.rd !!!!

RFoptions(modus_operandi="sloppy")


#########################################################
## simulate some data first
points <- 100
x <- runif(points, 0, 3)
y <- runif(points, 0, 3) ## random points in square [0, 3]^2
model <- RMgencauchy(alpha=1, beta=2)
d <- RFsimulate(model, x=x, y=y, grid=FALSE, n=n=100) #better n=1000


#########################################################
## estimation; 'NA' means: "to be estimated"
estmodel <- RMgencauchy(var=NA, scale=NA, alpha=NA, beta=2) +
            RMtrend(mean=NA)
RFcrossvalidate(estmodel, data=d)

}}

\dontshow{RFoptions(modus_operandi="normal")}
\dontshow{FinalizeExample()}}

\keyword{spatial}