File: RFfit-class.Rd

package info (click to toggle)
r-cran-randomfields 3.3.14-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,916 kB
  • sloc: cpp: 52,159; ansic: 3,015; makefile: 2; sh: 1
file content (289 lines) | stat: -rw-r--r-- 9,392 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
\name{RFfit-class}
\docType{class}
\alias{RFfit-class}
\alias{RF_fit-class}
\alias{show,RFfit-method}
\alias{persp,RFfit-method}
\alias{print,RFfit-method}
\alias{anova,RFfit-method}
\alias{AIC,RFfit-method}
\alias{BIC,RFfit-method}
\alias{summary,RFfit-methodt}
\alias{[,RFfit-method}
\alias{[,RFfit,ANY,ANY-method}
\alias{[,RFfit,ANY,ANY,ANY-method}
\alias{coerce,RFfit,RFempVariog-method}
\alias{print.RFfit}
\alias{plot,RFfit,missing-method}
\alias{contour.RFfit}
\alias{contour.RFempVariog}

\alias{AICc.RFfit}
\alias{logLik.RFfit}

\alias{print.RF_fit}
\alias{anova.RF_fit}
\alias{AIC.RF_fit}
\alias{BIC.RF_fit}
\alias{AICc.RF_fit}
\alias{summary.RF_fit}
\alias{logLik.RF_fit}
\alias{.RFfit}
\alias{.RF_fit}
\alias{residuals,RFfit-method}
\alias{summary,RFfit-method}
\alias{RFhessian}
%\alias{plot,RFfit-method}

\title{Class \code{RFfit}}
\description{ Class for RandomFields' representation of model estimation
 results 
}

%anova.RF_fit(object, ...)
%AIC.RF_fit(object, ..., k=2, method="ml", full=TRUE)
%BIC.RF_fit(object, ..., method="ml", full=TRUE)
%summary.RF_fit(object, ...,  method="ml", full=FALSE)
%print.RF_fit(x, ...,  method="ml", full=FALSE)
%logLik.RF_fit(object, REML = FALSE, ..., method="ml")

\usage{
\S4method{residuals}{RFfit}(object, ..., method="ml", full=FALSE)
\S4method{summary}{RFfit}(object, ..., method="ml")
\S4method{plot}{RFfit,missing}(x, y, ...) 

\S3method{contour}{RFfit}(x, ...) 
\S3method{contour}{RFempVariog}(x, ...)

RFhessian(model)
}

\arguments{  
 \item{object}{see the  generic function;
 }
 \item{...}{
   \itemize{
     \item \command{plot}: arguments to be passed to methods; mainly graphical
     arguments, or further models in case of class \code{CLASS_CLIST},
     see Details.

     \item \command{summary}:  see the generic function
     
     \item \command{contour} : see \command{\link{RFplotEmpVariogram}}
   }
 }
 \item{method}{character; only for \code{class(x)=="RFfit"}; a
    vector of slot names for which the fitted covariance or variogram
    model is to be plotted; should be a subset of 
    \code{slotNames(x)} for which the corresponding slots are of class
    \code{CLASS_FIT}; by default, the maximum likelihood fit
   (\code{"ml"}) will be
    plotted} 
  \item{full}{logical.
    if \code{TRUE} submodels are reported as well (if available).
  }
  \item{x}{object of class \code{\link[=RFsp-class]{RFsp}} or
    \command{\link[=RFempVariog-class]{RFempVariog}} or
    \command{\link[=RFfit-class]{RFfit}} or
    \command{\link[=RMmodel-class]{RMmodel}}; in the latter case, \code{x} can
    be any sophisticated model but it must be either stationary or a
    variogram model}
  \item{y}{unused}
  \item{model}{
    \code{class(x)=="RF_fit"} or \code{class(x)=="RFfit"}, obtained
    from \command{\link{RFfit}}
  }
}

\details{
  for the definition of \command{plot} see \command{\link{RFplotEmpVariogram}}.
}

\section{Creating Objects}{
 Objects are created by the function 
 \command{\link{RFfit}}
}

\section{Slots}{

\describe{
 \item{\code{autostart}:}{RMmodelFit; contains the estimation results
   for the method 'autostart' including a likelihood value, a constant
   trend and the residuals} 
 \item{\code{boxcox}:}{logical; whether the
   parameter of a Box Cox tranformation has been estimated
 }
 \item{\code{coordunits}:}{string giving the units of the coordinates,
   see also option \code{coordunits} of \command{\link{RFoptions}}.
 }
 \item{\code{deleted}:}{integer vector.
   Positions of the parameters that have been deleted to get the set of
   variables, used in the optimization.
 }
 \item{\code{ev}:}{list; list of objects of class
   \code{\link[=RFempVariog-class]{RFempVariog}}, 
   contains the empirical variogram estimates of the data} 
 \item{\code{fixed}:}{
   list of two vectors. The fist gives the position where the
   parameters are set to zero. The second gives the position where the
   parameters are set to one.
 }
 \item{\code{internal1}:}{RMmodelFit; analog to slot 'autostart'} 
 \item{\code{internal2}:}{RMmodelFit; analog to slot 'autostart'} 
 \item{\code{internal3}:}{RMmodelFit; analog to slot 'autostart'} 
 \item{\code{lowerbounds}:}{RMmodel; covariance model in which each
   parameter value gives the lower bound for the respective parameter} 
 \item{\code{ml}:}{RMmodelFit; analog to slot 'autostart'
 }
 \item{\code{modelinfo}:}{ table with information on the parameters:
   name, boundaries, type of   parameter 
 }
 \item{\code{n.covariates}:}{   number of covariates
 }
 \item{\code{n.param}:}{
   number of parameters (given by the user)
 }
 \item{\code{n.variab}:}{
   number of variables (used internally);
   \code{n.variab} is always less than or equal to \code{n.param}
 }
 \item{\code{number.of.data}:}{
   the number of data values passed to \command{\link{RFfit}} that are
   not \code{NA} or \code{NaN}
 }
 \item{\code{number.of.parameters}:}{
   total number of parameters of the model that had to be estimated
   including variances, scales, co-variables, etc.
 }
 \item{\code{p.proj}:}{vector of integers. The original position of those
   parameters that are used in the submodel
 }
 \item{\code{plain}:}{RMmodelFit; analog to slot 'autostart'} 
 \item{\code{report}:}{
   If not empty, it indicates that this model should be reported
   and gives a standard name of the model.
   
   Various functions, e.g. \command{print.RMmodelFit}, use
   this information if their argument \code{full} equals \code{TRUE}.
  
 }
 \item{\code{self}:}{RMmodelFit; analog to slot 'autostart'} 
 \item{\code{sd.inv}:}{RMmodelFit; analog to slot 'autostart'} 
 \item{\code{sqrt.nr}:}{RMmodelFit; analog to slot 'autostart'} 
 \item{\code{submodels}:}{
   list. Sequence  (in some cases even nested sequence)
   of models that is used to determine an initial value in
   \command{}
 }
 \item{\code{table}:}{matrix; summary of estimation results of
   different methods} 
 \item{\code{transform}:}{function; } 
 \item{\code{true.tsdim}:}{
   time space dimension of the (original!) data,
   even for submodels that consider parts of separable models.
 }
 \item{\code{true.vdim}:}{
   multivariability of the (original!) data,
   even for submodels that consider independent models
   for the multivariate components.
 }
 \item{\code{upperbounds}:}{RMmodel; see slot 'lowerbounds'} 
 \item{\code{users.guess}:}{RMmodelFit; analog to slot 'autostart'} 
 \item{\code{ml}:}{RMmodelFit; analog to slot 'autostart'; with maximum
   likelihood method}
 \item{\code{v.proj}:}{vector of integers.
   The components selected in one of the submodels
 }
 \item{\code{varunits}:}{string giving the units of the variables,
   see also option \code{varunits} of \command{\link{RFoptions}}.
 }
 \item{\code{x.proj}:}{
   logical or integer. If logical, it means that no
   separable model is considered there. If integer, then
   it gives the considered directions of a separable model.
 }
 \item{\code{Z}:}{
   standardized list of information on the data
 }
 }
}
 
%\section{Extends}{
%}


\section{Methods}{
  \describe{
    \item{plot}{\code{signature(x = "RFfit")}: gives a plot of the
      empirical variogram together with the fitted model, for more details see
      \command{\link{plot-method}}.
    }
    \item{show}{\code{signature(x = "RFfit")}: returns the structure
      of \code{x}
    }

    \item{persp}{\code{signature(obj =
	"RFfit")}: generates \command{\link[graphics]{persp}} plots
    }
    \item{print}{\code{signature(x = "RFfit")}: identical with
      \command{show}-method, additional argument is \code{max.level}
    }
    \item{[}{\code{signature(x = "RFfit")}: enables accessing
      the slots via the \code{"["}-operator, e.g. \code{x["ml"]}
    }
    \item{as}{\code{signature(x = "RFfit")}:
      converts into other formats, only implemented for target class 
      \code{\link[=RFempVariog-class]{RFempVariog}}
    }
    \item{anova}{performs a likelihood ratio test base on a chisq approximation
    }
    \item{summary}{provides a summary}
    \item{logLik}{provides an object of class \code{"logLik"}
    }
    \item{AIC,BIC}{provides the AIC and BIC information, respectively}
    \item{\code{signature(x = "RFfit", y = "missing")}}{Combines the plot of
      the empirical variogram with the estimated covariance or variogram
      model (theoretical) curves; further models can be added via the
      argument \code{model}.}
    }

}

\section{Further 'methods'}{
  
  \code{AICc.RFfit(object, ..., method="ml", full=FALSE)}
  
  \code{AICc.RF_fit(object, ..., method="ml", full=TRUE)}
}

%\section{Details}{
%}

\author{Alexander Malinowski; \martin}

\seealso{
 \code{\link{RFfit}},
 \code{\link{RFvariogram}},
 \code{\link{RMmodel-class}},
 \code{\link{RMmodelFit-class}},
 \code{\link{plot-method}}.
}
 

\references{
  AICc:
  \itemize{
    \item Hurvich, C.M. and Tsai, C.-L. (1989)
    Regression and Time Series Model Selection in Small Samples
    \emph{Biometrika}, \bold{76}, 297-307.  
  }
}

\examples{\dontshow{StartExample()}
# see RFfit
\dontshow{FinalizeExample()}
}

\keyword{classes}
\keyword{print}
\keyword{hplot}