1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
\name{RFfit-class}
\docType{class}
\alias{RFfit-class}
\alias{RF_fit-class}
\alias{show,RFfit-method}
\alias{persp,RFfit-method}
\alias{print,RFfit-method}
\alias{anova,RFfit-method}
\alias{AIC,RFfit-method}
\alias{BIC,RFfit-method}
\alias{summary,RFfit-methodt}
\alias{[,RFfit-method}
\alias{[,RFfit,ANY,ANY-method}
\alias{[,RFfit,ANY,ANY,ANY-method}
\alias{coerce,RFfit,RFempVariog-method}
\alias{print.RFfit}
\alias{plot,RFfit,missing-method}
\alias{contour.RFfit}
\alias{contour.RFempVariog}
\alias{AICc.RFfit}
\alias{logLik.RFfit}
\alias{print.RF_fit}
\alias{anova.RF_fit}
\alias{AIC.RF_fit}
\alias{BIC.RF_fit}
\alias{AICc.RF_fit}
\alias{summary.RF_fit}
\alias{logLik.RF_fit}
\alias{.RFfit}
\alias{.RF_fit}
\alias{residuals,RFfit-method}
\alias{summary,RFfit-method}
\alias{RFhessian}
%\alias{plot,RFfit-method}
\title{Class \code{RFfit}}
\description{ Class for RandomFields' representation of model estimation
results
}
%anova.RF_fit(object, ...)
%AIC.RF_fit(object, ..., k=2, method="ml", full=TRUE)
%BIC.RF_fit(object, ..., method="ml", full=TRUE)
%summary.RF_fit(object, ..., method="ml", full=FALSE)
%print.RF_fit(x, ..., method="ml", full=FALSE)
%logLik.RF_fit(object, REML = FALSE, ..., method="ml")
\usage{
\S4method{residuals}{RFfit}(object, ..., method="ml", full=FALSE)
\S4method{summary}{RFfit}(object, ..., method="ml")
\S4method{plot}{RFfit,missing}(x, y, ...)
\S3method{contour}{RFfit}(x, ...)
\S3method{contour}{RFempVariog}(x, ...)
RFhessian(model)
}
\arguments{
\item{object}{see the generic function;
}
\item{...}{
\itemize{
\item \command{plot}: arguments to be passed to methods; mainly graphical
arguments, or further models in case of class \code{CLASS_CLIST},
see Details.
\item \command{summary}: see the generic function
\item \command{contour} : see \command{\link{RFplotEmpVariogram}}
}
}
\item{method}{character; only for \code{class(x)=="RFfit"}; a
vector of slot names for which the fitted covariance or variogram
model is to be plotted; should be a subset of
\code{slotNames(x)} for which the corresponding slots are of class
\code{CLASS_FIT}; by default, the maximum likelihood fit
(\code{"ml"}) will be
plotted}
\item{full}{logical.
if \code{TRUE} submodels are reported as well (if available).
}
\item{x}{object of class \code{\link[=RFsp-class]{RFsp}} or
\command{\link[=RFempVariog-class]{RFempVariog}} or
\command{\link[=RFfit-class]{RFfit}} or
\command{\link[=RMmodel-class]{RMmodel}}; in the latter case, \code{x} can
be any sophisticated model but it must be either stationary or a
variogram model}
\item{y}{unused}
\item{model}{
\code{class(x)=="RF_fit"} or \code{class(x)=="RFfit"}, obtained
from \command{\link{RFfit}}
}
}
\details{
for the definition of \command{plot} see \command{\link{RFplotEmpVariogram}}.
}
\section{Creating Objects}{
Objects are created by the function
\command{\link{RFfit}}
}
\section{Slots}{
\describe{
\item{\code{autostart}:}{RMmodelFit; contains the estimation results
for the method 'autostart' including a likelihood value, a constant
trend and the residuals}
\item{\code{boxcox}:}{logical; whether the
parameter of a Box Cox tranformation has been estimated
}
\item{\code{coordunits}:}{string giving the units of the coordinates,
see also option \code{coordunits} of \command{\link{RFoptions}}.
}
\item{\code{deleted}:}{integer vector.
Positions of the parameters that have been deleted to get the set of
variables, used in the optimization.
}
\item{\code{ev}:}{list; list of objects of class
\code{\link[=RFempVariog-class]{RFempVariog}},
contains the empirical variogram estimates of the data}
\item{\code{fixed}:}{
list of two vectors. The fist gives the position where the
parameters are set to zero. The second gives the position where the
parameters are set to one.
}
\item{\code{internal1}:}{RMmodelFit; analog to slot 'autostart'}
\item{\code{internal2}:}{RMmodelFit; analog to slot 'autostart'}
\item{\code{internal3}:}{RMmodelFit; analog to slot 'autostart'}
\item{\code{lowerbounds}:}{RMmodel; covariance model in which each
parameter value gives the lower bound for the respective parameter}
\item{\code{ml}:}{RMmodelFit; analog to slot 'autostart'
}
\item{\code{modelinfo}:}{ table with information on the parameters:
name, boundaries, type of parameter
}
\item{\code{n.covariates}:}{ number of covariates
}
\item{\code{n.param}:}{
number of parameters (given by the user)
}
\item{\code{n.variab}:}{
number of variables (used internally);
\code{n.variab} is always less than or equal to \code{n.param}
}
\item{\code{number.of.data}:}{
the number of data values passed to \command{\link{RFfit}} that are
not \code{NA} or \code{NaN}
}
\item{\code{number.of.parameters}:}{
total number of parameters of the model that had to be estimated
including variances, scales, co-variables, etc.
}
\item{\code{p.proj}:}{vector of integers. The original position of those
parameters that are used in the submodel
}
\item{\code{plain}:}{RMmodelFit; analog to slot 'autostart'}
\item{\code{report}:}{
If not empty, it indicates that this model should be reported
and gives a standard name of the model.
Various functions, e.g. \command{print.RMmodelFit}, use
this information if their argument \code{full} equals \code{TRUE}.
}
\item{\code{self}:}{RMmodelFit; analog to slot 'autostart'}
\item{\code{sd.inv}:}{RMmodelFit; analog to slot 'autostart'}
\item{\code{sqrt.nr}:}{RMmodelFit; analog to slot 'autostart'}
\item{\code{submodels}:}{
list. Sequence (in some cases even nested sequence)
of models that is used to determine an initial value in
\command{}
}
\item{\code{table}:}{matrix; summary of estimation results of
different methods}
\item{\code{transform}:}{function; }
\item{\code{true.tsdim}:}{
time space dimension of the (original!) data,
even for submodels that consider parts of separable models.
}
\item{\code{true.vdim}:}{
multivariability of the (original!) data,
even for submodels that consider independent models
for the multivariate components.
}
\item{\code{upperbounds}:}{RMmodel; see slot 'lowerbounds'}
\item{\code{users.guess}:}{RMmodelFit; analog to slot 'autostart'}
\item{\code{ml}:}{RMmodelFit; analog to slot 'autostart'; with maximum
likelihood method}
\item{\code{v.proj}:}{vector of integers.
The components selected in one of the submodels
}
\item{\code{varunits}:}{string giving the units of the variables,
see also option \code{varunits} of \command{\link{RFoptions}}.
}
\item{\code{x.proj}:}{
logical or integer. If logical, it means that no
separable model is considered there. If integer, then
it gives the considered directions of a separable model.
}
\item{\code{Z}:}{
standardized list of information on the data
}
}
}
%\section{Extends}{
%}
\section{Methods}{
\describe{
\item{plot}{\code{signature(x = "RFfit")}: gives a plot of the
empirical variogram together with the fitted model, for more details see
\command{\link{plot-method}}.
}
\item{show}{\code{signature(x = "RFfit")}: returns the structure
of \code{x}
}
\item{persp}{\code{signature(obj =
"RFfit")}: generates \command{\link[graphics]{persp}} plots
}
\item{print}{\code{signature(x = "RFfit")}: identical with
\command{show}-method, additional argument is \code{max.level}
}
\item{[}{\code{signature(x = "RFfit")}: enables accessing
the slots via the \code{"["}-operator, e.g. \code{x["ml"]}
}
\item{as}{\code{signature(x = "RFfit")}:
converts into other formats, only implemented for target class
\code{\link[=RFempVariog-class]{RFempVariog}}
}
\item{anova}{performs a likelihood ratio test base on a chisq approximation
}
\item{summary}{provides a summary}
\item{logLik}{provides an object of class \code{"logLik"}
}
\item{AIC,BIC}{provides the AIC and BIC information, respectively}
\item{\code{signature(x = "RFfit", y = "missing")}}{Combines the plot of
the empirical variogram with the estimated covariance or variogram
model (theoretical) curves; further models can be added via the
argument \code{model}.}
}
}
\section{Further 'methods'}{
\code{AICc.RFfit(object, ..., method="ml", full=FALSE)}
\code{AICc.RF_fit(object, ..., method="ml", full=TRUE)}
}
%\section{Details}{
%}
\author{Alexander Malinowski; \martin}
\seealso{
\code{\link{RFfit}},
\code{\link{RFvariogram}},
\code{\link{RMmodel-class}},
\code{\link{RMmodelFit-class}},
\code{\link{plot-method}}.
}
\references{
AICc:
\itemize{
\item Hurvich, C.M. and Tsai, C.-L. (1989)
Regression and Time Series Model Selection in Small Samples
\emph{Biometrika}, \bold{76}, 297-307.
}
}
\examples{\dontshow{StartExample()}
# see RFfit
\dontshow{FinalizeExample()}
}
\keyword{classes}
\keyword{print}
\keyword{hplot}
|