1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
\name{RFformula}
\alias{RFformula}
\alias{RMformula}
\title{RFformula - syntax to design random field models with trend
or linear mixed models}
\description{It is described how to create a formula, which, for example, can be used as an argument of \command{\link{RFsimulate}} and
\command{\link{RFfit}} to simulate and to fit data according to the
model described by the formula.
In general, the created formula serves two purposes:
\itemize{
\item to describe models in the \dQuote{Linear Mixed
Models}-framework %including fixed and random effects
\item to define models for random fields including trend surfaces from
a geostatistical point of view.
}
Thereby, fixed effects and trend surfaces can be adressed via
the expression \command{\link{RMfixed}} and the function
\command{\link{RMtrend}}. In simple cases, the trend can also
be given in a very simple, see the examples below.
The covariance structures of the zero-mean
multivariate normally distributed %random effects and
random field
components are adressed by objects of class \code{\link[=RMmodel-class]{RMmodel}}, which
allow for a very flexible covariance specification.
See \link{RFformulaAdvanced} for rather complicated model definitions.
}
\details{
The formula should be of the type
\deqn{response ~ fixed effects %+ random effects
+ error term}
or
\deqn{response ~ trend + zero-mean random field + nugget effect,}
respectively.
Thereby:
\itemize{
\item response\cr
optional; name of response variable
\item fixed effects/trend:\cr
optional, should be a sum (using \command{\link[=RMplus]{+}})%%check link
of components either of the form \code{X@RMfixed(beta)} or
\code{\link{RMtrend}(...)} with \eqn{X} being a design matrix
and \eqn{\beta} being a vector of coefficients (see
\command{\link{RMfixed}} and \command{\link{RMtrend}}).\cr
Note that a fixed effect of the form \eqn{X} is interpreted as
\code{X@RMfixed(beta=NA)} by default (and \eqn{\beta} is estimated
provided that the formula is used in \command{\link{RFfit}}).
% \item random effects/zero-mean random field:\cr
% optional, should be a sum (using \command{\link[=RMplus]{+}})%%check link
% of components of the form \code{Z@model}
% where \eqn{Z} is a design matrix and \code{model} is an object of
%class \code{\link[=RMmodel-class]{RMmodel}}.\cr
%\code{Z@model} describes a vector of random effects which is
% normally distributed with zero mean and covariance matrix \eqn{Z
% \Sigma Z^T} where \eqn{Z^T} is the transpose of \eqn{Z} and
% \eqn{\Sigma} is the covariance matrix according to \code{model}.\cr
% Note that a random effect/random fluctuation of the form
% \code{model} is viewed as \code{I@model} where \eqn{I} is the
% identity matrix of corresponding dimension.
\item error term/nugget effect\cr
optional, should be of the form \code{\link{RMnugget}(...)}.
\command{\link{RMnugget}} describes a vector
of iid Gaussian random variables.
% Please note that the character \dQuote{@} in the RFformula-context can only
% be used to multiply design-matrices with corresponding vectors of
% fixed or random effects, whereas in the context of S4-classes \dQuote{@} is
% used to access slots of corresponding objects.
}
}
\section{IMPORTANT}{
Note that in formula constants are interpreted as part of a linear
model, i.e. the corresponding parameter has to be estimated
(e.g. \code{~ 1 + ...}) whereas in models not given as formula the
parameters to be estimated must be given explicitly.
}
\note{ %to do: make the following point cleares
(additional) argument names should always start with a capital
letter. Small initial letters are reserved for \command{\link{RFoptions}}.
}
\references{
\itemize{
\item Chiles, J.-P. and P. Delfiner (1999) \emph{Geostatistics. Modeling
Spatial Uncertainty.} New York, Chichester: John Wiley & Sons.
\item McCulloch, C. E., Searle, S. R. and Neuhaus, J. M. (2008)
\emph{Generalized, linear, and mixed models.} Hoboken, NJ: John
Wiley & Sons.
\item Ruppert, D. and Wand, M. P. and Carroll, R. J. (2003)
\emph{Semiparametric regression.} Cambridge: Cambridge University
Press.
}
}
\me
\seealso{
\command{\link{RMmodel}},
\command{\link{RFsimulate}},
\command{\link{RFfit}},
\code{\link[=RandomFields-package]{RandomFields}}.}
\keyword{spatial}
\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
RFoptions(modus_operandi="sloppy")
##############################################################
#
# Example : Simulation and fitting of a two-dimensional
# Gaussian random field with exponential covariance function
#
###############################################################
V <- 10
S <- 0.3
M <- 3
model <- RMexp(var=V, scale=S) + M
x <- y <- seq(1, 3, 0.1)
simulated <- RFsimulate(model = model, x=x, y=y)
plot(simulated)
# an alternative code to the above code:
model <- ~ Mean + RMexp(var=Var, scale=Sc)
simulated2 <- RFsimulate(model = model,x=x, y=y, Var=V, Sc=S, Mean=M)
plot(simulated2)
# a third way of specifying the model using the argument 'param'
# the initials of the variables do not be captical letters
model <- ~ M + RMexp(var=var, scale=sc)
simulated3 <- RFsimulate(model = model,x=x, y=y,
param=list(var=V, sc=S, M=M))
plot(simulated3)
# Estimate parameters of underlying covariance function via
# maximum likelihood
model.na <- ~ NA + RMexp(var=NA, scale=NA)
fitted <- RFfit(model=model.na, data=simulated)
# compare sample mean of data with ML estimate, which is very similar:
mean(simulated@data[,1])
fitted
\dontshow{\dontrun{
##############################################################
#
# Example 2: Fitting a standard linear mixed model using maximum
# likelihood to estimate the variance components
#
###############################################################
# Y = W*beta + Z*u + e
# where u ~ N(0, (sigma_u)^2 A) and e ~ N(0, (sigma_e)^2)
W <- rep(1,times=10)
Z <- matrix(rnorm(150) ,nrow=10, ncol=15)
A <- RFcovmatrix(0:14, model=RMexp())
response <- W*5 + Z%*%matrix(1:225, nrow=15)%*%rnorm(15, sd=10) + rnorm(10, sd=3)
# Estimate beta, (sigma_u)^2 and (sigma_e)^2:
model <- response ~ W@RMfixed(beta=NA) +
Z@RMfixcov(A, var=NA) +
RMnugget(var=NA)
fitted <- RFfit(model=model, data=response, W=W, Z=Z, A=A)
}}
\dontshow{\dontrun{
#### THIS EXAMPLE IS NOT PROGRAMMED YET
###########################################################
#
# Example 3: Simulate and fit a geostatistical model
#
###########################################################
# Simulate a Gaussian random field with trend m((x,y)) = 2 + 1.5 x - 3 y
# with vector of coordinates (x,y)
# and covariance function C(s,t) = 3*exp(-||(2*(s_1-t_1),s_2-t_2)||) +
# 1.5*exp(-||(2*(s_1-t_1),s_2-t_2)||^2)
# for s=(s_1,s_2) and t=(t_1,t_2)
model <- ~ RMtrend(mean=2) +
RMtrend(arbitraryfct=function(x) x, fctcoeff=1.5) +
RMtrend(arbitraryfct=function(y) y, fctcoeff=-3) +
RMplus(RMexp(var=3), RMgauss(var=1.5),
Aniso=matrix(c(2,0,0,1),nrow=2))
simulated <- RFsimulate(model=model,x=seq(0,2,0.1),y=seq(-1,3,0.2))
# equivalent model
model <- RMtrend(polydeg=1, polycoeff=c(2, 1.5, .3)) +
RMplus(RMexp(var=3), RMgauss(var=1.5),
Aniso=matrix(c(2,0,0,1), nrow=2))
simulated <- RFsimulate(model=model, x=seq(0,2,0.1), y=seq(-1,3,0.2))
# Estimate trend (polynomial of degree 1) and variance components such
# that var_exp = 2*var_gauss as in the true model used for simulation
model.na <- ~ RMtrend(polydeg=1) +
RMplus(RMexp(var=2),RMgauss(var=2),var=NA,
Aniso=matrix(c(NA,0,0,NA),nrow=2))
fit <- RFfit(model=model.na, data=simulated)
}}
\dontshow{\dontrun{
#### THIS EXAMPLE IS NOT PROGRAMMED YET
####################################################################
#
# Example 4: Simulate and fit a multivariate geostatistical model
#
####################################################################
# Simulate a bivariate Gaussian random field with trend
# m_1((x,y)) = x + 2*y and m_2((x,y)) = 3*x + 4*y
# where m_1 is a hyperplane describing the trend for the first response
# variable and m_2 is the trend for the second one;
# the covariance function is a multivariate nugget effect
x <- y <- 0:10
model <- ~ RMtrend(plane=matrix(c(1,2,3,4), ncol=2)) +
RMnugget(var=0.5, vdim=2)
multi.simulated <- RFsimulate(model=model, x=x, y=y)
# Fit the Gaussian random field with unknown trend for the second
# response variable and unknown variances
model.na <- ~ RMtrend(plane=matrix(c(NA,NA,NA,NA), ncol=2)) +
RMnugget(var=NA, vdim=2)
fit <- RFfit(model=model.na, data=multi.simulated)
}}
\dontshow{RFoptions(modus_operandi="normal")}
\dontshow{FinalizeExample()}}
|