1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
\name{RFhurst}
\alias{RFhurst}
%\alias{Hurst}
%\alias{long memory dependence}
\title{Hurst coefficient}
\description{
The function estimates the Hurst coefficient of a process
}
\usage{
RFhurst(x, y = NULL, z = NULL, data, sort = TRUE,
block.sequ = unique(round(exp(seq(log(min(3000, dimen[1]/5)),
log(dimen[1]),
len = min(100, dimen[1]))))),
fft.m = c(1, min(1000, (fft.len - 1)/10)),
fft.max.length = Inf, method = c("dfa", "fft", "var"),
mode = if (interactive ()) c("plot", "interactive") else "nographics", %ok
pch = 16, cex = 0.2, cex.main = 0.85,
printlevel = RFoptions()$basic$printlevel, height = 3.5,
...)
}
\arguments{
\item{x}{\argX}
\item{y,z}{\argYz}
\item{data}{the data}
% \item{grid}{logical; determines whether the vectors \code{x},
% \code{y}, and \code{z} should be
% interpreted as a grid definition, see Details. \code{grid}
% does not apply for \code{T}.}
\item{sort}{logical. If \code{TRUE} then the coordinates are permuted
such that the largest grid length is in \code{x}-direction; this is
of interest for algorithms that slice higher dimensional fields
into one-dimensional sections.
}
\item{block.sequ}{ascending sequences of block lengths for which the
detrended fluctuation analysis and the variance method are
performed.}
\item{fft.m}{vector of 2 integers; lower and upper endpoint of
indices for the frequency which are used in the calculation of the
regression line for the periodogram near the origin.}
\item{fft.max.length}{if the number of points in \code{x}-direction is
larger than \code{fft.max.length} then the segments of length
\code{fft.max.length} are considered, shifted by
\code{fft.max.length/2} (WOSA-estimator).}
\item{method}{list of implemented methods to calculate the Hurst parameter; see Details}
\item{mode}{character. A vector with components
\code{'nographics'}, \code{'plot'} or \code{'interactive'}: %; see the Details.
\describe{
\item{\code{'nographics'}}{no graphical output}
\item{\code{'plot'}}{the regression line is plotted}
\item{\code{'interactive'}}{the regression domain can be chosen
interactively}
}
Usually only one mode is given. Two modes may make sense
in the combination c("plot", "interactive") in which case all the
results are plotted first, and then the interactive mode is called.
In the interactive mode, the regression domain is chosen by
two mouse clicks with the left
mouse; a right mouse click leaves the plot.
}
\item{pch}{vector or scalar; sign by which data are plotted.}
\item{cex}{vector or scalar; size of \code{pch}.}
\item{cex.main}{font size for title in regression plot;
only used if mode includes \code{'plot'}
or \code{'interactive'}}
\item{printlevel}{integer. If \code{printlevel} is 0 or 1
nothing is printed.
If \code{printlevel=2} warnings and the regression results
are given. If \code{printlevel>2} tracing information is given.
}
\item{height}{height of the graphics window}
\item{...}{graphical arguments}
}
\details{
The function is still in development. Several functionalities do
not exist - see the code itself for the current stage.
The function calculates the Hurst coefficient by various methods:
\itemize{
\item detrended fluctuation analysis (dfa)
\item aggregated variation (var)
\item periodogram or WOSA estimator (fft)
}
}
\value{
The function returns a list with elements
\code{dfa}, \code{varmeth}, \code{fft} corresponding to
the three methods given in the Details.
Each of the elements is itself a list that contains the
following elements.
\item{x}{the x-coordinates used for the regression fit}
\item{y}{the y-coordinates used for the regression fit}
\item{regr}{the coefficients of the \command{\link[stats]{lm}}.}
\item{sm}{smoothed curve through the (x,y) points}
\item{x.u}{\code{NULL} or the restricted x-coordinates given
by the user in the interactive plot}
\item{y.u}{\code{NULL} or y-coordinates according to \code{x.u}}
\item{regr.u}{\code{NULL} or the coefficients of
\command{\link[stats]{lm}} for \code{x.u} and \code{y.u}}
\item{H}{the Hurst coefficient}
\item{H.u}{\code{NULL} or the Hurst coefficient corresponding to the
user's regression line}
}
\references{
% Overviews:
% \itemize{
% \item
% }
detrended fluctuation analysis
\itemize{
\item Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley,
H.E. and Goldberger, A.L. (1994)
Mosaic organization of DNA nucleotides
\emph{Phys. Rev. E} \bold{49}, 1685-1689
}
aggregated variation
\itemize{
\item Taqqu, M.S. and Teverovsky, V. (1998)
On estimating the intensity of long range dependence in finite and
infinite variance time series. In: Adler, R.J., Feldman, R.E., and
Taqqu, M.S. \emph{A Practical Guide to Heavy Tails, Statistical
Techniques an Applications.} Boston: Birkhaeuser
\item
Taqqu, M.S. and Teverovsky, V. and Willinger, W. (1995)
Estimators for long-range dependence: an empirical study.
\emph{Fractals} \bold{3}, 785-798
}
periodogram
\itemize{
\item Percival, D.B. and Walden, A.T. (1993)
\emph{Spectral Analysis for Physical Applications: Multitaper and
Conventional Univariate Techniques}, Cambridge: Cambridge
University Press.
\item Welch, P.D. (1967) The use of {F}ast {F}ourier {T}ransform for
the estimation of power spectra: a method based on time averaging
over short, modified periodograms \emph{IEEE Trans. Audio
Electroacoustics} \bold{15}, 70-73.
}
}
\me
\seealso{
\command{\link{RMmodel}}, \command{\link{RFfractaldim}}
}
\keyword{ spatial }%-- one or more ...
\examples{\dontshow{StartExample(reduced=50)}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
\dontshow{.randomfields.options = options()$warn; options(warn=0)}
x <- runif(1000)
h <- RFhurst(1:length(x), data=x)
\dontshow{options(warn = .randomfields.options)}
\dontshow{FinalizeExample()}}
% LocalWords: hurst gridtriple sequ exp len fft Inf dfa var pch cex WOSA regr
% LocalWords: printlevel RFoptions periodogram nographics itemize varmeth
% LocalWords: lm sm Schlather url ealso RMmodel
|