File: RFsimulateAdvanced.Rd

package info (click to toggle)
r-cran-randomfields 3.3.14-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,916 kB
  • sloc: cpp: 52,159; ansic: 3,015; makefile: 2; sh: 1
file content (531 lines) | stat: -rw-r--r-- 20,359 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
\name{RFsimulateAdvanced}
\alias{RFsimulateAdvanced}
\title{Simulation of Random Fields -- Advanced}


\description{
 This function simulates \bold{unconditional} random fields:
  \itemize{
    \item univariate and multivariate,
    spatial and spatio-temporal Gaussian random fields
    \item \link[=RPpoisson]{stationary Poisson fields}
    \item \link[=RPchi2]{Chi2 fields}
    \item \link[=RPt]{t fields}
    \item \link[=RPbernoulli]{Binary fields}
    \item \link[=RPmaxstable]{stationary max-stable random fields}.
  }

  It also simulates \bold{conditional} random fields for
  \itemize{
    \item univariate and multivariate,
    spatial and spatio-temporal Gaussian random fields.
  }

  For basic simulation of Gaussian random fields, see \link{RFsimulate}.
  See  \link{RFsimulate.more.examples} and
  \link{RFsimulate.sophisticated.examples} for further examples.

}


\arguments{
 \item{model}{object of class \code{\link[=RMmodel-class]{RMmodel}},
 \command{\link{RFformula}} or \command{\link[stats]{formula}};
 specifies the model to be simulated

 \itemize{
 \item if of class \code{\link[=RMmodel-class]{RMmodel}}, \code{model}
 specifies
 
 \itemize{
   \item the type of random field by using \code{RP}functions,
   e.g.,
   \itemize{ 
     \item \command{\link{RPgauss}}: Gaussian random field (default
     if none of the functions in the list is given)
     %	 \item \command{\link{RPbernoulli}}:
     %	 indicator field, based on a Gaussian field
     %	 \item \command{\link{RPpoisson}}: shot noise model
     %	 \item \command{\link{RPbrownresnick}}: Brown-Resnick processes
     %	 \item \command{\link{RPopitz}}: Extremal t process
     \item \command{\link{RPsmith}}: Smith model
     %	 \item \command{\link{RPschlather}}: Extremal Gaussian process
     %	 (also called Schlather model)
     See\code{ \link{RP}} for an overview.
   }
   
   \item the covariance or variogram model in case of a Gaussian random
   field (\command{\link{RPgauss}}) and for fields based on Gaussian fields
   (e.g. \command{\link{RPbernoulli}});
   type \code{\link{RFgetModelNames}(type="variogram")}
   for a list of available models; see also \command{\link{RMmodel}}.
   
   \item the shape function in case of a shot noise process; type
   \code{\link{RFgetModelNames}(type='shape')} for a list of
   available models.
   
%   \item the main structural element of a max-stable field
%   (\command{\link{RPbrownresnick}}, \command{\link{RPopitz}},
%   \command{\link{RPsmith}} and \command{\link{RPschlather}})	
 }
 
 \item if of class \code{\link{RFformula}} or \command{\link[stats]{formula}},
 \code{submodel} specifies a linear mixed model where random
 effects can be modelled by Gaussian random fields;
 see \command{\link{RFformula}} for details on model
 specification.
 }
 }
 \item{x}{matrix of coordinates, or vector of x coordinates, or object
 of class \code{\link[sp:GridTopology-class]{GridTopology}} or
   \code{\link[raster]{raster}}; 
 if matrix, \code{ncol(x)} is the dimension
 of the index space; matrix notation is required in case of more than 3 space
 dimensions; in this case, if \code{grid=FALSE}, \code{x_ij} is the
 i-th coordinate in the j-th dimension; otherwise, if
 \code{grid=TRUE}, the columns of \code{x} are interpreted as
 gridtriples (see \code{grid}); if of class \code{\link[sp:GridTopology-class]{GridTopology}},
 \code{x} is interpreted as grid definition and \code{grid}
 is automatically set to \code{TRUE}. 
 }
 \item{y}{optional vector of y coordinates, ignored if \code{x}
 is a matrix}
 \item{z}{optional vector of z coordinates, ignored if \code{x}
 is a matrix}
 \item{T}{optional vector of time coordinates, 
 \code{T} must always be an equidistant vector or given in a
 gridtriple format (see argument \code{grid}); for each component
 of \code{T}, the random field is simulated at all location points.
 }
 \item{grid}{logical; determines whether the vectors \code{x},
 \code{y}, and \code{z} or the columns of \code{x} should be
 interpreted as a grid definition (see Details). If \code{grid=TRUE},
 either \code{x}, \code{y}, and \code{z} must
 be equidistant vectors in ascending order or the columns of \code{x}
 must be given in the gridtriple format:
 \code{c(from, stepsize, len)}.


 Note: If \code{grid} is not given, \command{\link{RFsimulate}} tries to
 guess what is meant.
 
 \code{c(from, stepsize, len)} (see Details)
 } 
 \item{data}{matrix, data.frame or object of class \command{\link[=RFsp-class]{RFsp}};
 coordinates and response values of
 measurements in case that conditional simulation is to
 be performed;
 if a matrix or a data.frame, the first columns are
 interpreted as coordinate vectors, and the last column(s) as
 (multiple) measurement(s) of the field; if \code{x} is missing,
 \code{data} may contain \code{NA}s, which are then replaced by
 conditionally simulated values; if \code{data} is missing, unconditional
 simulation is performed;
 for details on matching of variable names see Details; if of class
 \command{\link[=RFsp-class]{RFsp}}
 }
 \item{err.model}{same as \code{model}; gives the model of the
 measurement errors for the measured \code{data} (which must be given
 in this case!), see Details.
 \code{err.model=NULL} (default) corresponds to error-free
 measurements, the most common alternative is
 \code{err.model=\link{RMnugget}()};
 ignored if \code{data} is missing.
 }
 \item{distances}{object of class \code{\link{dist}} representing
 the upper triangular part of the matrix of Euclidean distances
 between the points at which the field is to be simulated; only
 applicable for stationary and isotropic models; if not \code{NULL},
 \code{dim} must be given and \code{x}, \code{y}, \code{z} and
 \code{T} must be missing or \code{NULL}.

 If \code{distances} are given, the current value of \code{spConform}, see
 \command{\link{RFoptions}}, is ignored and instead
 \code{spConform=FALSE} is used. (This fact may change in future.) % To Do
 
 }
 \item{dim}{
 integer; space or space-time dimension of the field
 }
 \item{n}{number of realizations to generate}
 \item{...}{further options and control arguments for the simulation
 that are passed to and processed by \command{\link{RFoptions}}
 }
}


\details{
 \command{\link{RFsimulate}} simulates different classes of random fields,
 controlled by the wrapping model.

 If the wrapping function of the \code{model} argument is a covariance
 or variogram model, i.e., one of the list obtained by
 \code{\link{RFgetModelNames}(type="variogram",
 group.by="type")}, by default, a Gaussian field 
 with the corresponding covariance structure is simulated.
 By default, the simulation method is chosen automatically through internal algorithms.
 The simulation method can be set explicitly by enclosing the
 covariance function with a \link[=Gaussian]{method specification}.

 If other than Gaussian fields are to be simulated, the \code{model}
 argument must be enclosed by a function specifying the type of the
 random field.


 There are different possibilities of passing the locations at which
 the field is to be simulated. If \code{grid=FALSE}, all coordinate
 vectors (except for the time component \eqn{T}) must have the same
 length and the field is only simulated at the locations given by the
 rows of \eqn{x} or of \code{cbind(x, y, z)}. If \eqn{T} is not
 missing, the field is simulated for all combinations
 \eqn{(x[i, ], T[k])} or \eqn{(x[i], y[i], z[i], T[k])},
 \eqn{i=1, ..., }\code{nrow(x)}, \eqn{k=1, ..., }\code{length(T)},
 even if \code{model} is not explicitly a space-time model. 
 \cr
 If \code{grid=TRUE}, the vectors \code{x},
 \code{y}, \code{z} and \code{T} or the columns of \code{x} and
 \code{T} are
 interpreted as a grid definition, i.e. the field is simulated at all
 locations \eqn{(x_i, y_j, z_k, T_l)}, as given by
 \code{expand.grid(x, y, z, T)}. 
 Here, \dQuote{grid} means \dQuote{equidistant in each direction}, i.e. all
 vectors must be equidistant and in ascending order.
 In case of more than 3 space dimensions, the coordinates must be
 given in matrix notation. To enable different grid lengths for each
 direction in combination with the matrix notation, the
 \dQuote{gridtriple} notation \code{c(from, stepsize, len)} is used:
 If \code{x}, \code{y},
 \code{z}, \code{T} or the columns of \code{x} are of length 3, they
 are internally replaced by \code{seq(from=from,
 to=from+(len-1)*stepsize, by=stepsize)} , i.e. the field
 is simulated at all locations\cr
 \code{expand.grid(seq(x$from, length.out=x$len, by=x$stepsize),
 seq(y$from, length.out=y$len, by=y$stepsize),
 seq(z$from, length.out=z$len, by=z$stepsize),
 seq(T$from, length.out=T$len, by=T$stepsize))}
 

 If \code{data} is passed, conditional simulation is performed. 
 \itemize{
 \item
 If of class \code{\link[=RFsp-class]{RFsp}},
 \code{ncol(data@coords)} must equal the dimension of the index
 space. If \code{data@data} contains only a single variable,
 variable names are optional. If \code{data@data} contains
 more than one variable, variables must be named and \code{model}
 must be given in the tilde notation \code{resp ~ ... } (see
 \command{\link{RFformula}}) and \code{"resp"} must be contained
 in \code{names(data@data)}.
 \item
 % Beschreibung hier stimmt nicht so ganz mit Examples unten ueberein
 If \code{data} is a matrix or a data.frame, either \code{ncol(data)}
 equals \eqn{(dimension of index space + 1)} and the order of the
 columns is (x, y, z, T, response) or, if \code{data} contains
 more than one 
 response variable (i.e. \code{ncol(data) > (dimension of index
 space + 1)}), \code{colnames(data)} must contain
 \code{colnames(x)} or those of \code{"x", "y", "z", "T"} that
 are not missing. The response variable name is matched with
 \code{model}, which must be given in the tilde notation. If
 \code{"x", "y", "z", "T"} are missing and \code{data} contains
 \code{NA}s, \code{colnames(data)} must contain an element which starts
 with \sQuote{data}; the corresponding column and those behind it are
 interpreted as the given data and those before the corresponding
 column are interpreted as the coordinates.
 \item
 If \code{x} is missing, \command{\link{RFsimulate}} searches for
 \code{NA}s in the data and performs a conditional simulation
 for them.
 }

 Specification of \code{err.model}:
 In geostatistics we have two different interpretations of a nugget
 effect: small scale variability and measurement error.
 The result of conditional simulation usually does not include the
 measurement error. Hence the measurement error \code{err.model}
 must be given separately. For sake of generality, any model (and not
 only the nugget effect) is allowed.
 Consequently, \code{err.model} is ignored
 when unconditional simulation is performed.
 
 }

\value{By default, 
 an object of the virtual class
 \command{\link[=RFsp-class]{RFsp}};
 result is of class
 \command{\link[=RFspatialGridDataFrame]{RFspatialGridDataFrame}}
 if \eqn{[space-time-dimension > 1]} and the coordinates are on a grid,
 result is of class 
 \command{\link[=RFgridDataFrame]{RFgridDataFrame}}
 if \eqn{[space-time-dimension = 1]} and the coordinates are on a grid,
 result is of class
 \command{\link[=RFspatialPointsDataFrame]{RFspatialPointsDataFrame}}
 if \eqn{[space-time-dimension > 1]} and the coordinates are not on a grid,
 result is of class 
 \command{\link[=RFpointsDataFrame]{RFpointsDataFrame}}
 if \eqn{[space-time-dimension = 1]} and the coordinates are not on a
 grid.

 The output format can be switched to the "old" array format using
 \code{\link{RFoptions}}, either by globally setting
 \code{\link{RFoptions}(spConform=FALSE)} or by passing \code{spConform=FALSE}
 in the call of \command{\link{RFsimulate}}.
 Then the object returned by \command{\link{RFsimulate}}
 depends on the arguments \code{n} and \code{grid} in the following way:\cr

 If \code{vdim > 1} the \code{vdim}-variate vector makes the first dimension.

 If \code{grid=TRUE} an array of the dimension of the
 random field makes the next dimensions. Here, the dimensions
 are ordered in the sequence \code{x}, \code{y}, \code{z}, \code{T}
 (if given).
 
 Else if no time component is given, then the values are passed as a
 single vector. Else if the time component is given the next 2
 dimensions give the space and the time, respectively.
 
 If \code{n > 1} the repetitions make the last dimension.

 Note: Conversion between the \pkg{sp}
 format and the conventional format can be
 done using the method \command{RFspDataFrame2conventional} and the
 function \command{conventional2RFspDataFrame}. 
 
 \code{InitRFsimulate} returns 0 if no error has occurred and a positive value
 if failed.\cr

}

\note{Advanced options are
  \itemize{
    \item \code{spConform} (suppressed return of S4 objects)
    \item \code{practicalrange} (forces range of covariances to be one)
    \item \code{exactness} (chooses the simulation method by precision)
    \item \code{seed} (sets \code{\link[base]{.Random.seed}} locally or
    globally)
  }
  See \command{\link{RFoptions}} for further options.
}

\references{
% Gneiting, T. and Schlather, M. (2004)
% Statistical modeling with covariance functions.
% \emph{In preparation.}
General
\itemize{
  \item
 Lantuejoul, Ch. (2002) \emph{Geostatistical simulation.}
 \bold{New York:} Springer.

 \item
 Schlather, M. (1999) \emph{An introduction to positive definite
 functions and to unconditional simulation of random fields.}
 Technical report ST 99-10, Dept. of Maths and Statistics,
 Lancaster University.
 }

 Original work:
 \itemize{
 \item Circulant embedding:
 
 Chan, G. and Wood, A.T.A. (1997)
 An algorithm for simulating stationary Gaussian random fields.
 \emph{J. R. Stat. Soc., Ser. C} \bold{46}, 171-181.
 
 Dietrich, C.R. and Newsam, G.N. (1993)
 A fast and exact method for multidimensional Gaussian
 stochastic simulations.
 \emph{Water Resour. Res.} \bold{29}, 2861-2869. 
 
 Dietrich, C.R. and Newsam, G.N. (1996)
 A fast and exact method for multidimensional {G}aussian stochastic
 simulations: Extensions to realizations conditioned on direct and
 indirect measurement 
 \emph{Water Resour. Res.} \bold{32}, 1643-1652. 

 Wood, A.T.A. and Chan, G. (1994)
 Simulation of stationary Gaussian processes in \eqn{[0,1]^d}{[0,1]^d}
 \emph{J. Comput. Graph. Stat.} \bold{3}, 409-432.

 The code used in \cite{RandomFields} is based on
 Dietrich and Newsam (1996).
 
 \item Intrinsic embedding and Cutoff embedding:
 
 Stein, M.L. (2002)
 Fast and exact simulation of fractional Brownian surfaces.
 \emph{J. Comput. Graph. Statist.} \bold{11}, 587--599.
 
 
 Gneiting, T., Sevcikova, H., Percival, D.B., Schlather, M. and
 Jiang, Y. (2005)
 Fast and Exact Simulation of Large Gaussian Lattice Systems in
 \eqn{R^2}: Exploring the Limits
 \emph{J. Comput. Graph. Statist.} Submitted.

 \item Markov Gaussian Random Field:
 
 Rue, H. (2001) Fast sampling of Gaussian Markov random fields.
 \emph{J. R. Statist. Soc., Ser. B}, \bold{63} (2), 325-338.
 
 Rue, H., Held, L. (2005) \emph{Gaussian Markov Random Fields:
 Theory and Applications.}
 Monographs on Statistics and Applied Probability, no \bold{104},
 Chapman \& Hall.


 \item Turning bands method (TBM), turning layers:
 
 Dietrich, C.R. (1995) A simple and efficient space domain implementation
 of the turning bands method. \emph{Water Resour. Res.} \bold{31},
 147-156.
 
 Mantoglou, A. and Wilson, J.L. (1982) The turning bands method for
 simulation of random fields using line generation by a spectral
 method. \emph{Water. Resour. Res.} \bold{18}, 1379-1394.

 Matheron, G. (1973)
 The intrinsic random functions and their applications.
 \emph{Adv. Appl. Probab.} \bold{5}, 439-468.

 Schlather, M. (2004)
 Turning layers: A space-time extension of turning bands.
 \emph{Submitted}

 \item Random coins:
 
 Matheron, G. (1967) \emph{Elements pour une Theorie des Milieux
 Poreux}. Paris: Masson.
 }
}

\me

\seealso{
 \command{\link{RFoptions}},
 \command{\link{RMmodel}},
 \command{\link{RFgui}},
 \command{\link[=Gaussian]{methods for simulating Gaussian random fields}},
 \command{\link{RFfit}},
 \command{\link{RFvariogram}},
 \link{RFsimulate.more.examples},
 \link{RFsimulate.sophisticated.examples},
 \command{\link{RPgauss}}.
}

\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

\dontshow{\dontrun{

#############################################################
##                                                         ##
## Example 1: Specification of simulation method           ##
##                                                         ##
#############################################################

 ## usage of a specific method
 ## -- the complete list is obtained by RFgetMethodNames()
 model <- RMstable(alpha=1.5)
 x <- runif(100, max=20) 
 y <- runif(100, max=20) # 100 points in 2 dimensional space
 simulated <- RFsimulate(model = RPdirect(model), x=x, y=y) # cholesky
 plot(simulated)



#############################################################
##                                                         ##
## Example 2: Turnung band with different number of lines  ##
##                                                         ##
#############################################################
model <- RMstable(alpha=1.5)
x <- seq(0, 10, 0.01)
z <- RFsimulate(model = RPtbm(model), x=x, y=x)
plot(z)



#############################################################
##                                                         ##
## Example 3: Shot noise fields (random coins)             ##
##                                                         ##
#############################################################

 x <- GridTopology(0, .1, 500)

 z <- RFsimulate(model=RPpoisson(RMgauss()), x=x, mpp.intensity = 100)

 plot(z)
 par(mfcol=c(2,1))
 plot(z@data[,1:min(length(z@data), 1000)], type="l")
 hist(z@data[,1])
 
 
 z <- RFsimulate(x=x, model=RPpoisson(RMball()), mpp.intensity = 0.1)
 
 plot(z)
 par(mfcol=c(2,1))
 plot(z@data[,1:min(length(z@data), 1000)], type="l")
 hist(z@data[,1])
 



 #############################################################
 ##                                                         ##
 ## Example 4: a 2d random field based on                   ##
 ## covariance functions valid in 1d only                   ##
 ##                                                         ##
 #############################################################

x <- seq(0, 2, 0.1)
model <- RMfbm(alpha=0.5, Aniso=matrix(nrow=1, c(1, 0))) + 
         RMfbm(alpha=0.9, Aniso=matrix(nrow=1, c(0, 1)))
z <- RFsimulate(x, x, model=model)
plot(z)



#############################################################
##                                                         ##
## Example 5 : Brownian sheet                              ##
## (using Stein's method)                                  ##
##                                                         ##
#############################################################
 
# 2d
step <- 0.3 ## nicer, but also time consuming if step = 0.1
x <- seq(0, 5, step)
alpha <- 1 # in [0,2)
z <- RFsimulate(x=x, y=x, model=RMfbm(alpha=alpha))
plot(z)


# 3d
z <- RFsimulate(x=x, y=x, z=x,
 model=RMfbm(alpha=alpha))


#############################################################
##                                                         ##
## Example 5 : Non-Geometric anisotropy                    ##
##                                                         ##
#############################################################

x <- seq(0.1, 6, 0.12)
Aniso <- R.c(R.p(1)^2, R.p(2)^1.5)
z <- RFsimulate(RMexp(Aniso = Aniso) + 10, x, x)
plot(z) 
}}

\dontshow{FinalizeExample()}}




\keyword{spatial}