1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
|
\name{RMbicauchy}
\alias{RMbicauchy}
\title{Bivariate Cauchy Model}
\description{
\command{\link{RMbicauchy}} is a bivariate stationary isotropic covariance model
whose corresponding covariance function only depends on the distance
\eqn{r \ge 0}{r \ge 0} between
two points.
% and is given for \eqn{i,j \in \{1,2\}}{i,j = 1,2} by
% \deqn{C_{ij}(r)=[to be done].}
For constraints on the constants see Details.
}
\usage{
RMbicauchy(alpha, beta, s, rho, var, scale, Aniso, proj)
}
\arguments{
\item{alpha}{[to be done]}
\item{beta}{[to be done]}
\item{s}{a vector of length 3 of numerical values; each entry
positive; the vector \eqn{(s_{11},s_{21},s_{22})}}
\item{rho}{[to be done]
}
\item{var,scale,Aniso,proj}{optional arguments; same meaning for any
\command{\link{RMmodel}}. If not passed, the above
covariance function remains unmodified.}
}
\details{
Constraints on the constants: [to be done]
}
\value{
\command{\link{RMbicauchy}} returns an object of class \code{\link[=RMmodel-class]{RMmodel}}.
}
\references{
\itemize{
\item Moreva, O., Schlather, M. (2016) Modelling and simulation of bivariate Gaussian random fields.
\emph{arXiv 1412.1914}
}
}
\me
\seealso{
\command{\link{RMcauchy}},
\link{Multivariate RMmodels}.
}
\keyword{spatial}
\keyword{models}
\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
## todo
\dontshow{FinalizeExample()}
}
|