File: RMbigneiting.Rd

package info (click to toggle)
r-cran-randomfields 3.3.14-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,916 kB
  • sloc: cpp: 52,159; ansic: 3,015; makefile: 2; sh: 1
file content (169 lines) | stat: -rw-r--r-- 6,357 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
\name{RMbigneiting}
\alias{RMbigneiting}
\alias{RMbiwendland}
\title{Gneiting-Wendland Covariance Models}
\description{
 \command{\link{RMbigneiting}} is a bivariate stationary isotropic covariance
 model family whose elements 
 are specified by seven parameters.

 Let \deqn{\delta_{ij} = \mu + \gamma_{ij} + 1.}
 Then, 
 \deqn{
 C_{n}(h) = c_{ij} (C_{n, \delta} (h / s_{ij}))_{i,j=1,2}
 }
 and \eqn{ C_{n, \delta} }
 is the generalized Gneiting model
 with parameters \eqn{n} and \eqn{\delta}, see
 \code{\link{RMgengneiting}}, i.e.,
 \deqn{C_{\kappa=0, \delta}(r) = (1-r)^\beta 1_{[0,1]}(r), \qquad \beta=\delta
 + 2\kappa + 1/2;}{ 
 C_{\kappa=0, \delta}(r) = (1 - r)^\beta 1_{[0,1]}(r), \beta=\delta + 2\kappa + 1/2;}
 \deqn{C_{\kappa=1, \delta}(r) = \left(1+\beta r \right)(1-r)^{\beta} 1_{[0,1]}(r),
 \qquad \beta = \delta + 2\kappa + 1/2;}{
 C_{\kappa=1, \delta}(r) = (1+ \beta r)(1-r)^\beta 1_{[0,1]}(r),
 \beta = \delta + 2\kappa + 1/2;} 
 \deqn{C_{\kappa=2, \delta}(r)=\left( 1 + \beta r + \frac{\beta^{2} -
 1}{3}r^{2} \right)(1-r)^{\beta} 1_{[0,1]}(r), \qquad
 \beta=\delta + 2\kappa + 1/2;}{
 C(_{\kappa=2, \delta}(r) = (1 + \beta r + (\beta^2-1) r^(2)/3)(1-r)^\beta
 1_{[0,1]}(r), \beta = \delta + 2\kappa + 1/2;} 
 \deqn{ C_{\kappa=3, \delta}(r)=\left( 1 + \beta r + \frac{(2\beta^{2}-3)}{5} r^{2}+
 \frac{(\beta^2 - 4)\beta}{15} r^{3} \right)(1-r)^\beta 1_{[0,1]}(r),
 \qquad \beta=\delta+2\kappa+1/2.}{
 C_{\kappa=3, \delta}(r) = (1 + \beta r + (2 \beta^2-3 )r^(2)/5+(\beta^2 - 4) \beta
 r^(3)/15)(1-r)^\beta 1_{[0,1]}(r), \beta=\delta + 2\kappa + 1/2.}
 }
\usage{
RMbigneiting(kappa, mu, s, sred12, gamma, cdiag, rhored, c, var, scale, Aniso, proj)
}
\arguments{
 \item{kappa}{argument that chooses between the four different covariance
 models and may take values \eqn{0,\ldots,3}{0,...,3}.
 The model is \eqn{k} times
 differentiable.}
 \item{mu}{\code{mu} has to be greater than or equal to
 \eqn{\frac{d}{2}}{d/2} where \eqn{d}{d} is the (arbitrary)
 dimension of the random field.}
 \item{s}{vector of two elements giving the scale of the models on the
 diagonal, i.e. the vector \eqn{(s_{11}, s_{22})}.
 }
 \item{sred12}{value in \eqn{[-1,1]}. The scale on the offdiagonals is
 given by \eqn{s_{12} = s_{21} =}
 \code{sred12 *}
 \eqn{\min\{s_{11},s_{22}\}}{min{s_{11}, s_{22}}}.
 }
 \item{gamma}{a vector of length 3 of numerical values; each entry is
 positive.
 The vector \code{gamma} equals
 \eqn{(\gamma_{11},\gamma_{21},\gamma_{22})}.
 Note that \eqn{\gamma_{12} =\gamma_{21}}.
 }
 \item{cdiag}{a vector of length 2 of numerical values; each entry
 positive; the vector \eqn{(c_{11},c_{22})}.}
 \item{c}{a vector of length 3 of numerical values;
 the vector \eqn{(c_{11}, c_{21}, c_{22})}.
 Note that \eqn{c_{12}= c_{21}}.

 Either 
 \code{rhored} and \code{cdiag} or \code{c} must be given.
 }
 \item{rhored}{value in \eqn{[-1,1]}.
 See
 also the Details for the corresponding value of \eqn{c_{12}=c_{21}}.
 }
 \item{var,scale,Aniso,proj}{optional arguments; same meaning for any
 \command{\link{RMmodel}}. If not passed, the above
 covariance function remains unmodified.}
}
\details{
 A sufficient condition for the
 constant \eqn{c_{ij}} is
 \deqn{c_{12} = \rho_{\rm red} \cdot m \cdot \left(c_{11} c_{22}
 \prod_{i,j=1,2}
 \left(\frac{\Gamma(\gamma_{ij} + \mu + 2\kappa + 5/2)}{b_{ij}^{\nu_{ij} +
 2\kappa + 1} \Gamma(1 + \gamma_{ij}) \Gamma(\mu + 2\kappa + 3/2)}
 \right)^{(-1)^{i+j}}
 \right)^{1/2}
 }{
 c_{ij} = \rho_r m (c_{11} c_{22})^{1/2}
 }
 where \eqn{\rho_{\rm red} \in [-1,1]}{\rho_r in [-1,1]}.

 The constant \eqn{m} in the formula above is obtained as follows:
 \deqn{m = \min\{1, m_{-1}, m_{+1}\}}{m = min\{1, m_{-1}, m_{+1}\}}
 Let
 \deqn{a = 2 \gamma_{12} - \gamma_{11} -\gamma_{22}}
 \deqn{b = -2 \gamma_{12} (s_{11} + s_{22}) + \gamma_{11} (s_{12} +
 s_{22}) + \gamma_{22} (s_{12} + s_{11})}
 \deqn{e = 2 \gamma_{12} s_{11}s_{22} - \gamma_{11}s_{12}s_{22} -
 \gamma_{22}s_{12}s_{11}}
 \deqn{d = b^2 - 4ae}
 \deqn{t_j =\frac{- b + j \sqrt d}{2 a} }{t_j =(-b + j \sqrt d) / (2 a) }
 If \eqn{d \ge0} and \eqn{t_j \not\in (0, s_{12})}{t_j in (0, s_{12})^c} then \eqn{m_j=\infty} else
 \deqn{
 m_j =
 \frac{(1 - t_j/s_{11})^{\gamma_{11}}(1 -
 t_j/s_{22})^{\gamma_{22}}}{(1 - t_j/s_{12})^{2 \gamma_{11}}
 }{
 m_j = (1 - t_j/s_{11})^{\gamma_{11}} (1 -
 t_j/s_{22})^{\gamma_{22}} / (1 - t_j/s_{12})^{2 \gamma_{11}}
 }
 }

 In the function \command{\link{RMbigneiting}}, either \code{c} is
 passed, then the above condition is checked, or \code{rhored} is passed;
 then \eqn{c_{12}} is calculated by the above formula.
 
}
\value{
 \command{\link{RMbigneiting}} returns an object of class \code{\link[=RMmodel-class]{RMmodel}}.
}
\references{
  \itemize{
    \item Bevilacqua, M., Daley, D.J., Porcu, E., Schlather, M. (2012)
    Classes of compactly supported correlation functions for multivariate
    random fields. Technical report.
    
    \code{RMbigeneiting} is based on this original work.
    D.J. Daley, E. Porcu and M. Bevilacqua have published end of 
    2014 an article intentionally
    without clarifying the genuine authorship of \code{RMbigneiting},
    in particular,
    neither referring to this original work nor to \pkg{RandomFields},
    which has included \code{RMbigneiting} since version 3.0.5 (05 Dec
    2013).
    
    \item Gneiting, T. (1999)
    Correlation functions for atmospherical data analysis.
    \emph{Q. J. Roy. Meteor. Soc} Part A \bold{125}, 2449-2464.
    
    \item Wendland, H. (2005) \emph{Scattered Data Approximation.}
    {Cambridge Monogr. Appl. Comput. Math.}
  }
}

\me
\seealso{
 \command{\link{RMaskey}},
 \command{\link{RMbiwm}},
 \command{\link{RMgengneiting}},
 \command{\link{RMgneiting}},
 \command{\link{RMmodel}},
 \command{\link{RFsimulate}},
 \command{\link{RFfit}}.
}


\keyword{spatial}
\keyword{models}
\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

%# gamma is mainly a scale effect
model <- RMbigneiting(kappa=2, mu=0.5, gamma=c(0, 3, 6), rhored=1)
x <- seq(0, 10, 0.02)
plot(model)
plot(RFsimulate(model, x=x))
\dontshow{FinalizeExample()}}