1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
\name{RMbigneiting}
\alias{RMbigneiting}
\alias{RMbiwendland}
\title{Gneiting-Wendland Covariance Models}
\description{
\command{\link{RMbigneiting}} is a bivariate stationary isotropic covariance
model family whose elements
are specified by seven parameters.
Let \deqn{\delta_{ij} = \mu + \gamma_{ij} + 1.}
Then,
\deqn{
C_{n}(h) = c_{ij} (C_{n, \delta} (h / s_{ij}))_{i,j=1,2}
}
and \eqn{ C_{n, \delta} }
is the generalized Gneiting model
with parameters \eqn{n} and \eqn{\delta}, see
\code{\link{RMgengneiting}}, i.e.,
\deqn{C_{\kappa=0, \delta}(r) = (1-r)^\beta 1_{[0,1]}(r), \qquad \beta=\delta
+ 2\kappa + 1/2;}{
C_{\kappa=0, \delta}(r) = (1 - r)^\beta 1_{[0,1]}(r), \beta=\delta + 2\kappa + 1/2;}
\deqn{C_{\kappa=1, \delta}(r) = \left(1+\beta r \right)(1-r)^{\beta} 1_{[0,1]}(r),
\qquad \beta = \delta + 2\kappa + 1/2;}{
C_{\kappa=1, \delta}(r) = (1+ \beta r)(1-r)^\beta 1_{[0,1]}(r),
\beta = \delta + 2\kappa + 1/2;}
\deqn{C_{\kappa=2, \delta}(r)=\left( 1 + \beta r + \frac{\beta^{2} -
1}{3}r^{2} \right)(1-r)^{\beta} 1_{[0,1]}(r), \qquad
\beta=\delta + 2\kappa + 1/2;}{
C(_{\kappa=2, \delta}(r) = (1 + \beta r + (\beta^2-1) r^(2)/3)(1-r)^\beta
1_{[0,1]}(r), \beta = \delta + 2\kappa + 1/2;}
\deqn{ C_{\kappa=3, \delta}(r)=\left( 1 + \beta r + \frac{(2\beta^{2}-3)}{5} r^{2}+
\frac{(\beta^2 - 4)\beta}{15} r^{3} \right)(1-r)^\beta 1_{[0,1]}(r),
\qquad \beta=\delta+2\kappa+1/2.}{
C_{\kappa=3, \delta}(r) = (1 + \beta r + (2 \beta^2-3 )r^(2)/5+(\beta^2 - 4) \beta
r^(3)/15)(1-r)^\beta 1_{[0,1]}(r), \beta=\delta + 2\kappa + 1/2.}
}
\usage{
RMbigneiting(kappa, mu, s, sred12, gamma, cdiag, rhored, c, var, scale, Aniso, proj)
}
\arguments{
\item{kappa}{argument that chooses between the four different covariance
models and may take values \eqn{0,\ldots,3}{0,...,3}.
The model is \eqn{k} times
differentiable.}
\item{mu}{\code{mu} has to be greater than or equal to
\eqn{\frac{d}{2}}{d/2} where \eqn{d}{d} is the (arbitrary)
dimension of the random field.}
\item{s}{vector of two elements giving the scale of the models on the
diagonal, i.e. the vector \eqn{(s_{11}, s_{22})}.
}
\item{sred12}{value in \eqn{[-1,1]}. The scale on the offdiagonals is
given by \eqn{s_{12} = s_{21} =}
\code{sred12 *}
\eqn{\min\{s_{11},s_{22}\}}{min{s_{11}, s_{22}}}.
}
\item{gamma}{a vector of length 3 of numerical values; each entry is
positive.
The vector \code{gamma} equals
\eqn{(\gamma_{11},\gamma_{21},\gamma_{22})}.
Note that \eqn{\gamma_{12} =\gamma_{21}}.
}
\item{cdiag}{a vector of length 2 of numerical values; each entry
positive; the vector \eqn{(c_{11},c_{22})}.}
\item{c}{a vector of length 3 of numerical values;
the vector \eqn{(c_{11}, c_{21}, c_{22})}.
Note that \eqn{c_{12}= c_{21}}.
Either
\code{rhored} and \code{cdiag} or \code{c} must be given.
}
\item{rhored}{value in \eqn{[-1,1]}.
See
also the Details for the corresponding value of \eqn{c_{12}=c_{21}}.
}
\item{var,scale,Aniso,proj}{optional arguments; same meaning for any
\command{\link{RMmodel}}. If not passed, the above
covariance function remains unmodified.}
}
\details{
A sufficient condition for the
constant \eqn{c_{ij}} is
\deqn{c_{12} = \rho_{\rm red} \cdot m \cdot \left(c_{11} c_{22}
\prod_{i,j=1,2}
\left(\frac{\Gamma(\gamma_{ij} + \mu + 2\kappa + 5/2)}{b_{ij}^{\nu_{ij} +
2\kappa + 1} \Gamma(1 + \gamma_{ij}) \Gamma(\mu + 2\kappa + 3/2)}
\right)^{(-1)^{i+j}}
\right)^{1/2}
}{
c_{ij} = \rho_r m (c_{11} c_{22})^{1/2}
}
where \eqn{\rho_{\rm red} \in [-1,1]}{\rho_r in [-1,1]}.
The constant \eqn{m} in the formula above is obtained as follows:
\deqn{m = \min\{1, m_{-1}, m_{+1}\}}{m = min\{1, m_{-1}, m_{+1}\}}
Let
\deqn{a = 2 \gamma_{12} - \gamma_{11} -\gamma_{22}}
\deqn{b = -2 \gamma_{12} (s_{11} + s_{22}) + \gamma_{11} (s_{12} +
s_{22}) + \gamma_{22} (s_{12} + s_{11})}
\deqn{e = 2 \gamma_{12} s_{11}s_{22} - \gamma_{11}s_{12}s_{22} -
\gamma_{22}s_{12}s_{11}}
\deqn{d = b^2 - 4ae}
\deqn{t_j =\frac{- b + j \sqrt d}{2 a} }{t_j =(-b + j \sqrt d) / (2 a) }
If \eqn{d \ge0} and \eqn{t_j \not\in (0, s_{12})}{t_j in (0, s_{12})^c} then \eqn{m_j=\infty} else
\deqn{
m_j =
\frac{(1 - t_j/s_{11})^{\gamma_{11}}(1 -
t_j/s_{22})^{\gamma_{22}}}{(1 - t_j/s_{12})^{2 \gamma_{11}}
}{
m_j = (1 - t_j/s_{11})^{\gamma_{11}} (1 -
t_j/s_{22})^{\gamma_{22}} / (1 - t_j/s_{12})^{2 \gamma_{11}}
}
}
In the function \command{\link{RMbigneiting}}, either \code{c} is
passed, then the above condition is checked, or \code{rhored} is passed;
then \eqn{c_{12}} is calculated by the above formula.
}
\value{
\command{\link{RMbigneiting}} returns an object of class \code{\link[=RMmodel-class]{RMmodel}}.
}
\references{
\itemize{
\item Bevilacqua, M., Daley, D.J., Porcu, E., Schlather, M. (2012)
Classes of compactly supported correlation functions for multivariate
random fields. Technical report.
\code{RMbigeneiting} is based on this original work.
D.J. Daley, E. Porcu and M. Bevilacqua have published end of
2014 an article intentionally
without clarifying the genuine authorship of \code{RMbigneiting},
in particular,
neither referring to this original work nor to \pkg{RandomFields},
which has included \code{RMbigneiting} since version 3.0.5 (05 Dec
2013).
\item Gneiting, T. (1999)
Correlation functions for atmospherical data analysis.
\emph{Q. J. Roy. Meteor. Soc} Part A \bold{125}, 2449-2464.
\item Wendland, H. (2005) \emph{Scattered Data Approximation.}
{Cambridge Monogr. Appl. Comput. Math.}
}
}
\me
\seealso{
\command{\link{RMaskey}},
\command{\link{RMbiwm}},
\command{\link{RMgengneiting}},
\command{\link{RMgneiting}},
\command{\link{RMmodel}},
\command{\link{RFsimulate}},
\command{\link{RFfit}}.
}
\keyword{spatial}
\keyword{models}
\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
%# gamma is mainly a scale effect
model <- RMbigneiting(kappa=2, mu=0.5, gamma=c(0, 3, 6), rhored=1)
x <- seq(0, 10, 0.02)
plot(model)
plot(RFsimulate(model, x=x))
\dontshow{FinalizeExample()}}
|