File: RMgenfbm.Rd

package info (click to toggle)
r-cran-randomfields 3.3.14-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,916 kB
  • sloc: cpp: 52,159; ansic: 3,015; makefile: 2; sh: 1
file content (72 lines) | stat: -rw-r--r-- 2,299 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
\name{RMgenfbm}
\alias{RMgenfbm}

\title{Generalized Fractal Brownian Motion Variogram Model}
\description{
  \command{\link{RMgenfbm}} is an intrinsically stationary isotropic
 variogram model.
 The corresponding centered semi-variogram only depends on the distance
 \eqn{r \ge 0}{r \ge 0} between two points and is given by
 \deqn{\gamma(r) = (r^{\alpha}+1)^{\beta/\alpha}-1}{\gamma(r)=(r^{\alpha}+1)^{\beta/\alpha}-1}
 where \eqn{\alpha \in (0,2]}{0 < \alpha \le 2} and \eqn{\beta \in (0,2]}.\cr
 See also \command{\link{RMfbm}}.
}
\usage{
RMgenfbm(alpha, beta, var, scale, Aniso, proj)
}
\arguments{
 \item{alpha}{a numerical value; should be in the interval (0,2].}
 \item{beta}{a numerical value; should be in the interval (0,2].}
 \item{var,scale,Aniso,proj}{optional arguments; same meaning for any
 \command{\link{RMmodel}}. If not passed, the above
 variogram remains unmodified.}
}
\details{
 Here, the variogram of \command{\link{RMfbm}} is modified by
 the transformation \eqn{(\gamma+1)^{\delta/-1}} on variograms
 \eqn{\gamma}
 for \eqn{\delta \in (0,1]}. This original modification allows for
 further generalization, cf. \command{\link{RMbcw}}.
}
\value{
 \command{\link{RMgenfbm}} returns an object of class \code{\link[=RMmodel-class]{RMmodel}}.

}
\references{
 \itemize{
 \item Gneiting, T. (2002) Nonseparable, stationary covariance
 functions for space-time data, \emph{JASA} \bold{97}, 590-600.
 
 \item
 Schlather, M. (2010)
 On some covariance models based on normal scale mixtures.
 \emph{Bernoulli}, \bold{16}, 780-797.

 
 % \item Martin's Toledo-Chapter: Construction of covariance functions
 % and unconditional simulation of random fields, Application to variograms
 }
}

\me
\seealso{
  \command{\link{RMbcw}},
 \command{\link{RMfbm}},
 \command{\link{RMmodel}},
 \command{\link{RMflatpower}},
 \command{\link{RFsimulate}},
 \command{\link{RFfit}}.
}

\keyword{spatial}
\keyword{models}

\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

model <- RMgenfbm(alpha=1, beta=0.5)
x <- seq(0, 10, 0.02)
plot(model)
plot(RFsimulate(model, x=x))
\dontshow{FinalizeExample()}}