File: RMintexp.Rd

package info (click to toggle)
r-cran-randomfields 3.3.14-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,916 kB
  • sloc: cpp: 52,159; ansic: 3,015; makefile: 2; sh: 1
file content (50 lines) | stat: -rw-r--r-- 1,515 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
\name{RMintexp}
\alias{RMintexp}
\title{Integral exponential operator}
\description{
 \command{\link{RMintexp}} is a univariate stationary covariance model
 depending on a univariate variogram model \eqn{\phi}{phi}.
 The corresponding covariance function only depends on the difference
 \eqn{h}{h} between two points and is given by
 \deqn{C(h)=(1 - exp(-\phi(h)))/\phi(h)}{C(h)=(1 - exp(-phi(h)))/phi(h)}}
 \usage{
RMintexp(phi, var, scale, Aniso, proj)
}
\arguments{
 \item{phi}{a variogram \command{\link{RMmodel}}}
 \item{var,scale,Aniso,proj}{optional arguments; same meaning for any
 \command{\link{RMmodel}}. If not passed, the above
 covariance function remains unmodified.}
}
%\details{}
\value{
 \command{\link{RMintexp}} returns an object of class \code{\link[=RMmodel-class]{RMmodel}}.
}
\references{
 \itemize{
 \item Schlather, M. (2012)
 Construction of covariance functions and unconditional simulation of
 random fields.
 \emph{Lecture Notes in Statistics, Proceedings}, \bold{207}, 25--54.
 }
}

\me
\seealso{
 \command{\link{RMmodel}},
 \command{\link{RFsimulate}},
 \command{\link{RFfit}}.
}

\keyword{spatial}
\keyword{models}

\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

model <- RMintexp(RMfbm(alpha=1.5, scale=0.2))
x <- seq(0, 10, 0.02)
plot(model)
plot(RFsimulate(model, x=x))
\dontshow{FinalizeExample()}}