File: RMmodel.Rd

package info (click to toggle)
r-cran-randomfields 3.3.14-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,916 kB
  • sloc: cpp: 52,159; ansic: 3,015; makefile: 2; sh: 1
file content (148 lines) | stat: -rw-r--r-- 5,053 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
\name{RMmodel}
\alias{RMmodel}
\alias{RMmodels}
\alias{[,RMmodel,ANY,ANY-method} %]
\alias{[<-,RMmodel,ANY,ANY-method} %]
\title{Covariance and Variogram Models in \pkg{RandomFields} (RM commands)}
\description{
Summary of implemented covariance and variogram models% in \link{RFformula}
}

\details{
 To generate a covariance or variogram model for use within
 \pkg{RandomFields}, calls of the form
 \deqn{RM_name_(..., var, scale, Aniso, proj)}
 can be used,
 where _name_ has to be replaced by a valid model name.
 \itemize{
 \item
 \code{...} can take model specific arguments. %Argument
 %corresponding to specific covariance model
 \item
 \code{var} is the optional variance argument \eqn{v},
 \item
 \code{scale} the optional scale argument \eqn{s},
 \item
 \code{Aniso} an optional anisotropy matrix \eqn{A} or given by \command{\link{RMangle}}, and
 \item
 \code{proj} is the optional projection.
 } 
 With \eqn{\phi} denoting the original model, the transformed model is
 \eqn{C(h) = v * \phi(A*h/s)}.
 See \command{\link{RMS}} for more details.
 

 \command{RM_name_} must be a function of class
 \command{\link[=RMmodelgenerator-class]{RMmodelgenerator}}.
 The return value of all functions \command{RM_name_} is of class
 \command{\link[=RMmodel-class]{RMmodel}}.\cr
 
 The following models are available
 (cf. \command{\link{RFgetModelNames}}):
 %Choose from the following covariance models

 \bold{Basic stationary and isotropic models}
 \tabular{ll}{
 \command{\link{RMcauchy}} \tab Cauchy family \cr
 \command{\link{RMexp}} \tab exponential model \cr
 \command{\link{RMgencauchy}} \tab generalized Cauchy family \cr
 \command{\link{RMgauss}} \tab Gaussian model \cr
 \command{\link{RMgneiting}} \tab differentiable model with compact support \cr
 \command{\link{RMmatern}} \tab Whittle-Matern model \cr
 \command{\link{RMnugget}} \tab nugget effect model \cr
 \command{\link{RMspheric}} \tab spherical model \cr
 \command{\link{RMstable}} \tab symmetric stable family or powered exponential model \cr
 \command{\link{RMwhittle}} \tab Whittle-Matern model, alternative
 parametrization\cr 
 }

 \bold{Variogram models (stationary increments/intrinsically stationary)}

 \tabular{ll}{
 \command{\link{RMfbm}} \tab fractal Brownian motion\cr
 }


 \bold{Basic Operations}

 \tabular{ll}{
 \command{\link{RMmult}}, \code{*} \tab product of covariance models \cr
 \command{\link{RMplus}}, \code{+} \tab sum of covariance models or variograms\cr
 }



% \bold{Basic models for mixed effect modelling}
% \tabular{ll}{
% \command{\link{RMfixcov}} \tab constant pre-defined covariance \cr
% \command{\link{RMfixed}} \tab fixed or trend effects;
% caution: \link{RMfixed} is not
% a function and can be used only in \link[=RFformula]{formula notation}.\cr
% %\command{\link{RMmixed}} \tab Mixture of fixed, mixed, and random effect
% %model\cr % gibts nur noch intern
% }

 \bold{Others}
 \tabular{ll}{
   \command{\link{RMtrend}} \tab trend \cr
   \command{\link{RMangle}} \tab defines a 2x2 anisotropy matrix by
   rotation and stretch arguments.
 }

  
% \bold{See \link{RMmodelsAdvanced} for many more, advanced models.\cr
% \bold{See \link{spherical models} for models valid on spherical
%coordinate systems.}
% }
}

\references{
 \itemize{
 \item Chiles, J.-P. and Delfiner, P. (1999)
 \emph{Geostatistics. Modeling Spatial Uncertainty.}
 New York: Wiley.
 % \item Gneiting, T. and Schlather, M. (2004)
 % Statistical modeling with covariance functions.
 % \emph{In preparation.}
 \item Schlather, M. (1999) \emph{An introduction to positive definite
 functions and to unconditional simulation of random fields.}
 Technical report ST 99-10, Dept. of Maths and Statistics,
 Lancaster University.
 \item Schlather, M. (2011) Construction of covariance functions and
 unconditional simulation of random fields. In Porcu, E., Montero, J.M.
 and Schlather, M., \emph{Space-Time Processes and Challenges Related
 to Environmental Problems.} New York: Springer.
 \item Yaglom, A.M. (1987) \emph{Correlation Theory of Stationary and
 Related Random Functions I, Basic Results.}
 New York: Springer.
 \item Wackernagel, H. (2003) \emph{Multivariate Geostatistics.} Berlin:
 Springer, 3nd edition.
 }
}

\author{Alexander Malinowski; \martin}


\seealso{
  \link{RM} for an overview over more advanced classes of models\cr
  \link{RC}, \link{RF}, \link{RP}, \link{RR}, \link{R.},
  \command{\link{RFcov}},
  \command{\link{RFformula}},
  \command{\link{RMmodelsAdvanced}},
  \command{\link{RMmodelsAuxiliary}},
  \link{trend modelling}
}

\keyword{spatial}
\keyword{models}


\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

## an example of a simple model
model <- RMexp(var=1.6, scale=0.5) + RMnugget(var=0) #exponential + nugget
plot(model)

\dontshow{FinalizeExample()}}