1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
\name{RMmodel}
\alias{RMmodel}
\alias{RMmodels}
\alias{[,RMmodel,ANY,ANY-method} %]
\alias{[<-,RMmodel,ANY,ANY-method} %]
\title{Covariance and Variogram Models in \pkg{RandomFields} (RM commands)}
\description{
Summary of implemented covariance and variogram models% in \link{RFformula}
}
\details{
To generate a covariance or variogram model for use within
\pkg{RandomFields}, calls of the form
\deqn{RM_name_(..., var, scale, Aniso, proj)}
can be used,
where _name_ has to be replaced by a valid model name.
\itemize{
\item
\code{...} can take model specific arguments. %Argument
%corresponding to specific covariance model
\item
\code{var} is the optional variance argument \eqn{v},
\item
\code{scale} the optional scale argument \eqn{s},
\item
\code{Aniso} an optional anisotropy matrix \eqn{A} or given by \command{\link{RMangle}}, and
\item
\code{proj} is the optional projection.
}
With \eqn{\phi} denoting the original model, the transformed model is
\eqn{C(h) = v * \phi(A*h/s)}.
See \command{\link{RMS}} for more details.
\command{RM_name_} must be a function of class
\command{\link[=RMmodelgenerator-class]{RMmodelgenerator}}.
The return value of all functions \command{RM_name_} is of class
\command{\link[=RMmodel-class]{RMmodel}}.\cr
The following models are available
(cf. \command{\link{RFgetModelNames}}):
%Choose from the following covariance models
\bold{Basic stationary and isotropic models}
\tabular{ll}{
\command{\link{RMcauchy}} \tab Cauchy family \cr
\command{\link{RMexp}} \tab exponential model \cr
\command{\link{RMgencauchy}} \tab generalized Cauchy family \cr
\command{\link{RMgauss}} \tab Gaussian model \cr
\command{\link{RMgneiting}} \tab differentiable model with compact support \cr
\command{\link{RMmatern}} \tab Whittle-Matern model \cr
\command{\link{RMnugget}} \tab nugget effect model \cr
\command{\link{RMspheric}} \tab spherical model \cr
\command{\link{RMstable}} \tab symmetric stable family or powered exponential model \cr
\command{\link{RMwhittle}} \tab Whittle-Matern model, alternative
parametrization\cr
}
\bold{Variogram models (stationary increments/intrinsically stationary)}
\tabular{ll}{
\command{\link{RMfbm}} \tab fractal Brownian motion\cr
}
\bold{Basic Operations}
\tabular{ll}{
\command{\link{RMmult}}, \code{*} \tab product of covariance models \cr
\command{\link{RMplus}}, \code{+} \tab sum of covariance models or variograms\cr
}
% \bold{Basic models for mixed effect modelling}
% \tabular{ll}{
% \command{\link{RMfixcov}} \tab constant pre-defined covariance \cr
% \command{\link{RMfixed}} \tab fixed or trend effects;
% caution: \link{RMfixed} is not
% a function and can be used only in \link[=RFformula]{formula notation}.\cr
% %\command{\link{RMmixed}} \tab Mixture of fixed, mixed, and random effect
% %model\cr % gibts nur noch intern
% }
\bold{Others}
\tabular{ll}{
\command{\link{RMtrend}} \tab trend \cr
\command{\link{RMangle}} \tab defines a 2x2 anisotropy matrix by
rotation and stretch arguments.
}
% \bold{See \link{RMmodelsAdvanced} for many more, advanced models.\cr
% \bold{See \link{spherical models} for models valid on spherical
%coordinate systems.}
% }
}
\references{
\itemize{
\item Chiles, J.-P. and Delfiner, P. (1999)
\emph{Geostatistics. Modeling Spatial Uncertainty.}
New York: Wiley.
% \item Gneiting, T. and Schlather, M. (2004)
% Statistical modeling with covariance functions.
% \emph{In preparation.}
\item Schlather, M. (1999) \emph{An introduction to positive definite
functions and to unconditional simulation of random fields.}
Technical report ST 99-10, Dept. of Maths and Statistics,
Lancaster University.
\item Schlather, M. (2011) Construction of covariance functions and
unconditional simulation of random fields. In Porcu, E., Montero, J.M.
and Schlather, M., \emph{Space-Time Processes and Challenges Related
to Environmental Problems.} New York: Springer.
\item Yaglom, A.M. (1987) \emph{Correlation Theory of Stationary and
Related Random Functions I, Basic Results.}
New York: Springer.
\item Wackernagel, H. (2003) \emph{Multivariate Geostatistics.} Berlin:
Springer, 3nd edition.
}
}
\author{Alexander Malinowski; \martin}
\seealso{
\link{RM} for an overview over more advanced classes of models\cr
\link{RC}, \link{RF}, \link{RP}, \link{RR}, \link{R.},
\command{\link{RFcov}},
\command{\link{RFformula}},
\command{\link{RMmodelsAdvanced}},
\command{\link{RMmodelsAuxiliary}},
\link{trend modelling}
}
\keyword{spatial}
\keyword{models}
\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
## an example of a simple model
model <- RMexp(var=1.6, scale=0.5) + RMnugget(var=0) #exponential + nugget
plot(model)
\dontshow{FinalizeExample()}}
|