File: RMmodelsAdvanced.Rd

package info (click to toggle)
r-cran-randomfields 3.3.14-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,916 kB
  • sloc: cpp: 52,159; ansic: 3,015; makefile: 2; sh: 1
file content (245 lines) | stat: -rw-r--r-- 9,354 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
\name{RMmodelsAdvanced}
\alias{RMmodelsAdvanced}
\alias{Advanced RMmodels}
\title{Advanced features of the models}
\description{
 Here, further models and advanced comments for \command{\link{RMmodel}}
 are given. See also \command{\link{RFgetModelNames}}.
}

\details{

\bold{Further stationary and isotropic models}

\tabular{ll}{
\command{\link{RMaskey}} \tab Askey model (generalized test or triangle model) \cr
\command{\link{RMbcw}} \tab bridging model between
                       \command{\link{RMcauchy}} and \command{\link{RMgenfbm}} \cr
\command{\link{RMbessel}} \tab Bessel family \cr
\command{\link{RMcircular}} \tab circular model \cr
\command{\link{RMconstant}} \tab spatially constant model \cr
\command{\link{RMcubic}} \tab cubic model (see Chiles and Delfiner) \cr
\command{\link{RMdagum}} \tab Dagum model \cr
\command{\link{RMdampedcos}} \tab exponentially damped cosine \cr
\command{\link{RMqexp}} \tab variant of the exponential model \cr
\command{\link{RMfractdiff}} \tab fractionally differenced process \cr
\command{\link{RMfractgauss}} \tab fractional Gaussian noise \cr
\command{\link{RMgengneiting}} \tab generalized Gneiting model \cr
\command{\link{RMgneitingdiff}} \tab Gneiting model for tapering \cr
\command{\link{RMhyperbolic}} \tab generalized hyperbolic model \cr
\command{\link{RMlgd}} \tab Gneiting's local-global distinguisher\cr
\command{\link{RMlsfbm}} \tab locally stationary fractal Brownian motion \cr
\command{\link{RMpenta}} \tab penta model (see Chiles and Delfiner) \cr
\command{\link{RMpower}} \tab Golubov's model \cr
\command{\link{RMwave}} \tab cardinal sine \cr
}

\bold{Variogram models (stationary increments/intrinsically stationary)}

\tabular{ll}{
\command{\link{RMbcw}} \tab bridging model between
                       \command{\link{RMcauchy}} and \command{\link{RMgenfbm}} \cr
\command{\link{RMdewijsian}} \tab generalized version of the DeWijsian model \cr
\command{\link{RMgenfbm}} \tab generalized fractal Brownian motion \cr
\command{\link{RMflatpower}} \tab similar to fractal Brownian motion but
always smooth at the origin\cr
}

\bold{General composed models (operators)}

Here, composed models are given that can be of any kind (stationary/non-stationary), depending on the submodel.

\tabular{ll}{
% \command{\link{RMCauchy}} \tab Cauchy like transform -- TO BE PROGRAMMED (includes \code{ma1})) \cr
\command{\link{RMbernoulli}} \tab Correlation function of a binary field
based on a Gaussian field \cr
 \command{\link{RMexponential}} \tab exponential of a covariance model \cr
 \command{\link{RMintexp}} \tab integrated exponential of a covariance model (INCLUDES \code{ma2})\cr
 \command{\link{RMpower}} \tab powered variograms\cr
 \command{\link{RMqam}} \tab Porcu's quasi-arithmetic-mean model\cr
 \command{\link{RMS}} \tab details on the optional transformation
 arguments (\code{var}, \code{scale}, \code{Aniso}, \code{proj})
}

\bold{Stationary and isotropic composed models (operators)}

\tabular{ll}{
 \command{\link{RMcutoff}} \tab Gneiting's modification towards finite range\cr
 \command{\link{RMintrinsic}} \tab Stein's modification towards finite range\cr
 \command{\link{RMnatsc}} \tab practical range\cr
 \command{\link{RMstein}} \tab Stein's modification towards finite range\cr 
% \command{\link{RMtbm2}} \tab Turning bands operator in two (spatial)
% dimensions\cr % nicht an user exportiert
 \command{\link{RMtbm}}\tab Turning bands operator
}

\bold{Stationary space-time models}
\cr
See \link{RMmodelsSpaceTime}.

\bold{Non-stationary models}
\cr
See \link{RMmodelsNonstationary}.

\bold{Negative definite models that are not variograms}
\tabular{ll}{
\command{\link{RMsum}} \tab a non-stationary variogram model\cr
}


\bold{Models related to max-stable random fields (tail correlation
  functions)}
\cr
See \link{RMmodelsTailCorrelation}.


\bold{Other covariance models}
\tabular{ll}{
  \command{\link{RMcov}} \tab covariance structure given by a variogram\cr 
  \command{\link{RMfixcov}} \tab User defined covariance structure\cr 
 \command{\link{RMuser}} \tab User defined model \cr
}

\bold{Trend models}
\tabular{ll}{
  \code{\link[=RMS]{Aniso}} \tab for space transformation (not really
  trend, but similar)\cr
  \command{\link{RMcovariate}} \tab spatial covariates\cr
  \command{\link{RMprod}} \tab to model variability of the variance\cr
  \command{\link{RMpolynome}} \tab easy modelling of polynomial trends \cr
  \command{\link{RMtrend}} \tab for explicit trend modelling\cr
  \command{\link{R.models}} \tab for implicit trend modelling\cr
  \command{\link{R.c}} \tab for multivariate trend modelling \cr
}
 

\bold{Auxiliary models}\cr
 See \bold{\link{Auxiliary RMmodels}.}
}

\note{
  \itemize{
    \item
    Note that, instead of the named arguments, a single argument \code{k}
    can be passed. This is possible if all the arguments
    are scalar. Then \code{k} must have a length equal to the number of
    arguments.
    \item
    If an argument equals \code{NULL} the
    argument is not set (but must have a valid name).
    \item
    \code{Aniso} can be given also by \command{\link{RMangle}}
    or any other \command{\link{RMmodel}} instead of a matrix
    \item
    Note also that a completely different possibility exists to define a
    model, namely by a list. This format allows for easy flexible models
    and modifications (and some few more options, as well as some
    abbreviations to the model names, see \command{PrintModelList()}).
    Here, the argument \code{var}, \code{scale},
    \code{Aniso} and \code{proj} must be passed by the model
    \command{\link{RMS}}. 
    For instance,
    \itemize{
      \item
      \code{model <- RMexp(scale=2, var=5)}
      \cr
      is equivalent to
      \cr
      \code{model <- list("RMS", scale=2, var=5, list("RMexp"))}
      \cr
      The latter definition can be also obtained by
      
      \code{print(RMexp(scale=2, var=5))}
      
      \item
      \code{model <- RMnsst(phi=RMgauss(var=7), psi=RMfbm(alpha=1.5),
	scale=2, var=5)}
       \cr
       is equivalent to
        \cr
	\code{model <- list("RMS", scale=2, var=5,} \cr
	\code{list("RMnsst", phi=list("RMS", var=7, list("RMgauss")),} \cr
	\code{psi=list("RMfbm", alpha=1.5))
	)}.
    }
 
    All models have secondary names that stem from 
    \pkg{RandomFields} versions 2 and earlier and
    that can also be used as strings in the list notation.
    See \code{\link{RFgetModelNames}(internal=FALSE)} for
    the full list.     
 }
}

%\section{Methods}{
% \describe{
% \item{[}{\code{signature(x = "RFgridDataFrame")}: selects
% slot by name}
% \item{[<-}{\code{signature(x = "RFgridDataFrame")}: replaces
% slot by name}
% \item{as}{\code{signature(x = "RFgridDataFrame")}:
% converts into other formats, only implemented for target class
% \command{\link[=RFpointsDataFrame-class]{RFpointsDataFrame}} } 
% \item{cbind}{\code{signature(...)}: if arguments have identical
% topology, combine their attribute values}
% }
%}


\references{
 \itemize{
 \item Chiles, J.-P. and Delfiner, P. (1999)
 \emph{Geostatistics. Modeling Spatial Uncertainty.}
 New York: Wiley.
 % \item Gneiting, T. and Schlather, M. (2004)
 % Statistical modeling with covariance functions.
 % \emph{In preparation.}
 \item Schlather, M. (1999) \emph{An introduction to positive definite
 functions and to unconditional simulation of random fields.}
 Technical report ST 99-10, Dept. of Maths and Statistics,
 Lancaster University.
 \item Schlather, M. (2011) Construction of covariance functions and
 unconditional simulation of random fields. In Porcu, E., Montero, J.M.
 and Schlather, M., \emph{Space-Time Processes and Challenges Related
 to Environmental Problems.} New York: Springer.
 % \item Schlather, M. (2002) Models for stationary max-stable
 % random fields. \emph{Extremes} \bold{5}, 33-44.
 \item
   Schlather, M., Malinowski, A., Menck, P.J., Oesting, M. and
    Strokorb, K. (2015) 
    Analysis, simulation and prediction of multivariate
    random fields with package \pkg{RandomFields}. \emph{
      Journal of Statistical Software}, \bold{63} (8), 1-25,
    url          = \sQuote{http://www.jstatsoft.org/v63/i08/}

    \sQuote{\href{../doc/multivariate_jss.pdf}{multivariate}}, the
    corresponding vignette.

 \item Yaglom, A.M. (1987) \emph{Correlation Theory of Stationary and
 Related Random Functions I, Basic Results.}
 New York: Springer. \item Wackernagel, H. (2003) \emph{Multivariate Geostatistics.} Berlin:
 Springer, 3nd edition.
 }
}

\seealso{\command{\link{RFformula}},
  \link{RM},
  \command{\link{RMmodels}},
  \command{\link{RMmodelsAuxiliary}}.

}

\author{Alexander Malinowski; \martin}
\keyword{spatial}

\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

## a non-stationary field with a sharp boundary
## of the differentiabilities
x <- seq(-0.6, 0.6, len=50)
model <- RMwhittle(nu=0.8 + 1.5 * R.is(R.p(new="isotropic"), "<=", 0.5))
z <- RFsimulate(model=model, x, x, n=4)
plot(z)
\dontshow{FinalizeExample()}}