1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
\name{RMmodelsAdvanced}
\alias{RMmodelsAdvanced}
\alias{Advanced RMmodels}
\title{Advanced features of the models}
\description{
Here, further models and advanced comments for \command{\link{RMmodel}}
are given. See also \command{\link{RFgetModelNames}}.
}
\details{
\bold{Further stationary and isotropic models}
\tabular{ll}{
\command{\link{RMaskey}} \tab Askey model (generalized test or triangle model) \cr
\command{\link{RMbcw}} \tab bridging model between
\command{\link{RMcauchy}} and \command{\link{RMgenfbm}} \cr
\command{\link{RMbessel}} \tab Bessel family \cr
\command{\link{RMcircular}} \tab circular model \cr
\command{\link{RMconstant}} \tab spatially constant model \cr
\command{\link{RMcubic}} \tab cubic model (see Chiles and Delfiner) \cr
\command{\link{RMdagum}} \tab Dagum model \cr
\command{\link{RMdampedcos}} \tab exponentially damped cosine \cr
\command{\link{RMqexp}} \tab variant of the exponential model \cr
\command{\link{RMfractdiff}} \tab fractionally differenced process \cr
\command{\link{RMfractgauss}} \tab fractional Gaussian noise \cr
\command{\link{RMgengneiting}} \tab generalized Gneiting model \cr
\command{\link{RMgneitingdiff}} \tab Gneiting model for tapering \cr
\command{\link{RMhyperbolic}} \tab generalized hyperbolic model \cr
\command{\link{RMlgd}} \tab Gneiting's local-global distinguisher\cr
\command{\link{RMlsfbm}} \tab locally stationary fractal Brownian motion \cr
\command{\link{RMpenta}} \tab penta model (see Chiles and Delfiner) \cr
\command{\link{RMpower}} \tab Golubov's model \cr
\command{\link{RMwave}} \tab cardinal sine \cr
}
\bold{Variogram models (stationary increments/intrinsically stationary)}
\tabular{ll}{
\command{\link{RMbcw}} \tab bridging model between
\command{\link{RMcauchy}} and \command{\link{RMgenfbm}} \cr
\command{\link{RMdewijsian}} \tab generalized version of the DeWijsian model \cr
\command{\link{RMgenfbm}} \tab generalized fractal Brownian motion \cr
\command{\link{RMflatpower}} \tab similar to fractal Brownian motion but
always smooth at the origin\cr
}
\bold{General composed models (operators)}
Here, composed models are given that can be of any kind (stationary/non-stationary), depending on the submodel.
\tabular{ll}{
% \command{\link{RMCauchy}} \tab Cauchy like transform -- TO BE PROGRAMMED (includes \code{ma1})) \cr
\command{\link{RMbernoulli}} \tab Correlation function of a binary field
based on a Gaussian field \cr
\command{\link{RMexponential}} \tab exponential of a covariance model \cr
\command{\link{RMintexp}} \tab integrated exponential of a covariance model (INCLUDES \code{ma2})\cr
\command{\link{RMpower}} \tab powered variograms\cr
\command{\link{RMqam}} \tab Porcu's quasi-arithmetic-mean model\cr
\command{\link{RMS}} \tab details on the optional transformation
arguments (\code{var}, \code{scale}, \code{Aniso}, \code{proj})
}
\bold{Stationary and isotropic composed models (operators)}
\tabular{ll}{
\command{\link{RMcutoff}} \tab Gneiting's modification towards finite range\cr
\command{\link{RMintrinsic}} \tab Stein's modification towards finite range\cr
\command{\link{RMnatsc}} \tab practical range\cr
\command{\link{RMstein}} \tab Stein's modification towards finite range\cr
% \command{\link{RMtbm2}} \tab Turning bands operator in two (spatial)
% dimensions\cr % nicht an user exportiert
\command{\link{RMtbm}}\tab Turning bands operator
}
\bold{Stationary space-time models}
\cr
See \link{RMmodelsSpaceTime}.
\bold{Non-stationary models}
\cr
See \link{RMmodelsNonstationary}.
\bold{Negative definite models that are not variograms}
\tabular{ll}{
\command{\link{RMsum}} \tab a non-stationary variogram model\cr
}
\bold{Models related to max-stable random fields (tail correlation
functions)}
\cr
See \link{RMmodelsTailCorrelation}.
\bold{Other covariance models}
\tabular{ll}{
\command{\link{RMcov}} \tab covariance structure given by a variogram\cr
\command{\link{RMfixcov}} \tab User defined covariance structure\cr
\command{\link{RMuser}} \tab User defined model \cr
}
\bold{Trend models}
\tabular{ll}{
\code{\link[=RMS]{Aniso}} \tab for space transformation (not really
trend, but similar)\cr
\command{\link{RMcovariate}} \tab spatial covariates\cr
\command{\link{RMprod}} \tab to model variability of the variance\cr
\command{\link{RMpolynome}} \tab easy modelling of polynomial trends \cr
\command{\link{RMtrend}} \tab for explicit trend modelling\cr
\command{\link{R.models}} \tab for implicit trend modelling\cr
\command{\link{R.c}} \tab for multivariate trend modelling \cr
}
\bold{Auxiliary models}\cr
See \bold{\link{Auxiliary RMmodels}.}
}
\note{
\itemize{
\item
Note that, instead of the named arguments, a single argument \code{k}
can be passed. This is possible if all the arguments
are scalar. Then \code{k} must have a length equal to the number of
arguments.
\item
If an argument equals \code{NULL} the
argument is not set (but must have a valid name).
\item
\code{Aniso} can be given also by \command{\link{RMangle}}
or any other \command{\link{RMmodel}} instead of a matrix
\item
Note also that a completely different possibility exists to define a
model, namely by a list. This format allows for easy flexible models
and modifications (and some few more options, as well as some
abbreviations to the model names, see \command{PrintModelList()}).
Here, the argument \code{var}, \code{scale},
\code{Aniso} and \code{proj} must be passed by the model
\command{\link{RMS}}.
For instance,
\itemize{
\item
\code{model <- RMexp(scale=2, var=5)}
\cr
is equivalent to
\cr
\code{model <- list("RMS", scale=2, var=5, list("RMexp"))}
\cr
The latter definition can be also obtained by
\code{print(RMexp(scale=2, var=5))}
\item
\code{model <- RMnsst(phi=RMgauss(var=7), psi=RMfbm(alpha=1.5),
scale=2, var=5)}
\cr
is equivalent to
\cr
\code{model <- list("RMS", scale=2, var=5,} \cr
\code{list("RMnsst", phi=list("RMS", var=7, list("RMgauss")),} \cr
\code{psi=list("RMfbm", alpha=1.5))
)}.
}
All models have secondary names that stem from
\pkg{RandomFields} versions 2 and earlier and
that can also be used as strings in the list notation.
See \code{\link{RFgetModelNames}(internal=FALSE)} for
the full list.
}
}
%\section{Methods}{
% \describe{
% \item{[}{\code{signature(x = "RFgridDataFrame")}: selects
% slot by name}
% \item{[<-}{\code{signature(x = "RFgridDataFrame")}: replaces
% slot by name}
% \item{as}{\code{signature(x = "RFgridDataFrame")}:
% converts into other formats, only implemented for target class
% \command{\link[=RFpointsDataFrame-class]{RFpointsDataFrame}} }
% \item{cbind}{\code{signature(...)}: if arguments have identical
% topology, combine their attribute values}
% }
%}
\references{
\itemize{
\item Chiles, J.-P. and Delfiner, P. (1999)
\emph{Geostatistics. Modeling Spatial Uncertainty.}
New York: Wiley.
% \item Gneiting, T. and Schlather, M. (2004)
% Statistical modeling with covariance functions.
% \emph{In preparation.}
\item Schlather, M. (1999) \emph{An introduction to positive definite
functions and to unconditional simulation of random fields.}
Technical report ST 99-10, Dept. of Maths and Statistics,
Lancaster University.
\item Schlather, M. (2011) Construction of covariance functions and
unconditional simulation of random fields. In Porcu, E., Montero, J.M.
and Schlather, M., \emph{Space-Time Processes and Challenges Related
to Environmental Problems.} New York: Springer.
% \item Schlather, M. (2002) Models for stationary max-stable
% random fields. \emph{Extremes} \bold{5}, 33-44.
\item
Schlather, M., Malinowski, A., Menck, P.J., Oesting, M. and
Strokorb, K. (2015)
Analysis, simulation and prediction of multivariate
random fields with package \pkg{RandomFields}. \emph{
Journal of Statistical Software}, \bold{63} (8), 1-25,
url = \sQuote{http://www.jstatsoft.org/v63/i08/}
\sQuote{\href{../doc/multivariate_jss.pdf}{multivariate}}, the
corresponding vignette.
\item Yaglom, A.M. (1987) \emph{Correlation Theory of Stationary and
Related Random Functions I, Basic Results.}
New York: Springer. \item Wackernagel, H. (2003) \emph{Multivariate Geostatistics.} Berlin:
Springer, 3nd edition.
}
}
\seealso{\command{\link{RFformula}},
\link{RM},
\command{\link{RMmodels}},
\command{\link{RMmodelsAuxiliary}}.
}
\author{Alexander Malinowski; \martin}
\keyword{spatial}
\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
## a non-stationary field with a sharp boundary
## of the differentiabilities
x <- seq(-0.6, 0.6, len=50)
model <- RMwhittle(nu=0.8 + 1.5 * R.is(R.p(new="isotropic"), "<=", 0.5))
z <- RFsimulate(model=model, x, x, n=4)
plot(z)
\dontshow{FinalizeExample()}}
|