1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
\name{RMtrend}
\alias{RMtrend}
\alias{trend}
\alias{RM_TREND}
\title{Trend Model}
\description{
\command{\link{RMtrend}} is a pure trend model with covariance 0.
}
\usage{
RMtrend(mean) %, plane, polydeg, polycoeff, arbitraryfct, fctcoeff)
}
\arguments{ % to do orthogonale Polynome
\item{mean}{numeric or \link{RMmodel}.
If it is numerical, it should be a vector of length \eqn{p}{p}, where
\eqn{p}{p} is the number of variables taken into account by the
corresponding multivariate random field
\eqn{(Z_1(\cdot),\ldots,Z_p(\cdot))}{(Z_1(.),\ldots,Z_p(.))};
the \eqn{i}{i}-th component of \code{mean} is interpreted as constant
mean of \eqn{Z_i(\cdot)}{Z_i(.)}.
}
% \item{plane, polydeg, polycoeff,arbitraryfct,fctcoeff}{
% argument currently not maintained anymore.}
}
\details{
Note that this function refers to trend surfaces in the geostatistical
framework. Fixed effects in the mixed models framework are also being
implemented, see \command{\link{RFformula}}.
}
\note{
Using uncapsulated subtraction to build up a covariance
function is ambiguous, see the examples below.
Best to define the trend separately, or to use
\command{\link{R.minus}}.
}
\value{
\command{\link{RMtrend}} returns an object of class \code{\link[=RMmodel-class]{RMmodel}}.
}
\references{Chiles, J. P., Delfiner, P. (1999) \emph{Geostatistics:
Modelling Spatial Uncertainty.} New York: John Wiley & Sons.
}
\author{\marco; \martin}
\seealso{
\command{\link{RMmodel}},
\command{\link{RFformula}},
\command{\link{RFsimulate}},
\command{\link{RMplus}}
}
\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
## first simulate some data with a sine and a mean as trend
repet <- 100
\dontshow{if(RFoptions()$internal$examples_reduced){warning("reduced 'repet'"); repet <- 3}}
x <- seq(0, pi, len=10)
trend <- 2 * sin(R.p(new="isotropic")) + 3
model1 <- RMexp(var=2, scale=1) + trend
dta <- RFsimulate(model1, x=x, n=repet)
## now, let us estimate variance, scale, and two parameters of the trend
model2 <- RMexp(var=NA, scale=NA) + NA * sin(R.p(new="isotropic")) + NA
\dontshow{if(RFoptions()$internal$examples_reduced){warning("reduced 'repet'"); model2 <- RMexp(var=NA) + NA * sin(R.p(new="isotropic")) + NA}}
print(RFfit(model2, data=dta))
## model2 can be made explicit by enclosing the trend parts by
## 'RMtrend'
model3 <- RMexp(var=NA, scale=NA) + NA *
RMtrend(sin(R.p(new="isotropic"))) + RMtrend(NA)
print(RFfit(model2, data=dta))
## IMPORTANT: subtraction is not a way to combine definite models
## with trends
trend <- -1
(model0 <- RMexp(var=0.4) + trend) ## exponential covariance with mean -1
(model1 <- RMexp(var=0.4) + -1) ## same as model0
(model2 <- RMexp(var=0.4) + RMtrend(-1)) ## same as model0
(model3 <- RMexp(var=0.4) - 1) ## this is a purely deterministic model
## with exponential trend
plot(RFsimulate(model=model0, x=x, y=x)) ## exponential covariance
## and mean -1
plot(RFsimulate(model=model1, x=x, y=x)) ## dito
plot(RFsimulate(model=model2, x=x, y=x)) ## dito
plot(RFsimulate(model=model3, x=x, y=x)) ## purely deterministic model!
\dontshow{\dontrun{
##################################################
# Example 1: #
# Simulate from model with a plane trend surface #
##################################################
#trend: 1 + x - y, cov: exponential with variance 0.01
model <- ~ RMtrend(mean=1, plane = c(1,-1)) + RMexp(var=0.04)
#equivalent model:
model <- ~ RMtrend(polydeg=1,polycoeff=c(1,1,-1)) + RMexp(var=0.4)
#Simulation
x <- 0:10
simulated0 <- RFsimulate(model=model, x=x, y=x)
plot(simulated0)
}}
\dontshow{\dontrun{
## PLOT SIEHT NICHT OK AUS !!
####################################################################
#
# Example 2: Simulate and fit a multivariate geostatistical model
#
####################################################################
# Simulate a bivariate Gaussian random field with trend
# m_1((x,y)) = x + 2*y and m_2((x,y)) = 3*x + 4*y
# where m_1 is a hyperplane describing the trend for the first response
# variable and m_2 is the trend for the second one;
# the covariance function is the sum of a bivariate Whittle-Matern model
# and a multivariate nugget effect
x <- y <- 0:10
x <- y <- seq(0, 10, 0.1)
model <- RMtrend(plane=matrix(c(1,2,3,4), ncol=2)) +
RMparswm(nu=c(1,1)) + RMnugget(var=0.5)
multi.simulated <- RFsimulate(model=model, x=x, y=y)
plot(multi.simulated)
}}
\dontshow{\dontrun{
# Fit the Gaussian random field with unknown trend for the second
# response variable and unknown variances
model.na <- RMtrend(plane=matrix(c(1, 2, NA, NA), ncol=2)) +
RMparswm(nu=c(1,1), var=NA) + RMnugget(var=NA)
fit <- RFfit(model=model.na, data=multi.simulated)
}}
\dontshow{\dontrun{
##################################################
#
# Example 3: Simulation and estimation for model with
# arbitrary trend functions
#
##################################################
#Simulation
# trend: 2*sin(x) + 0.5*cos(y), cov: spherical with scale 3
model <- ~ RMtrend(arbitraryfct=function(x) sin(x),
fctcoeff=2) +
RMtrend(arbitraryfct=function(y) cos(y),
fctcoeff=0.5) +
RMspheric(scale=3)
x <- seq(-4*pi, 4*pi, pi/10)
simulated <- RFsimulate(model=model, x=x, y=x)
plot(simulated)
################# ?? !!
#Estimation, part 1
# estimate coefficients and scale
model.est <- ~ RMtrend(arbitraryfct=function(x) sin(x), fctcoeff=1) +
RMtrend(arbitraryfct=function(y) cos(y), fctcoeff=1) +
RMspheric(scale=NA)
estimated <- RFfit(model=model.est, x=x, y=x,
data=simulated@data, mle.methods="ml")
#Estimation
# estimate coefficients and scale
model.est <- ~ RMtrend(arbitraryfct=function(x) sin(x)) +
RMtrend(arbitraryfct=function(y) cos(y)) +
RMspheric(scale=NA)
estimated <- RFfit(model=model.est, x=x, y=x,
data=simulated@data, mle.methods="ml")
##################################################
#
# Example 4: Simulation and estimation for model with
# polynomial trend
#
##################################################
#Simulation
# trend: 2*x^2 - 3 y^2, cov: whittle-matern with nu=1,scale=0.5
model <- ~ RMtrend(arbitraryfct=function(x) 2*x^2 - 3*y^2,
fctcoeff=1) + RMwhittle(nu=1, scale=0.5)
# equivalent model:
model <- ~ RMtrend(polydeg=2, polycoeff=c(0,0,2,0,0,-3))
x <- 0:20
simulated <- RFsimulate(model=model, x=x, y=x)
plot(simulated)
#Estimation
# estimate nu and the trend term assuming that it is a polynomial
# of degree 2
model.est <- ~ RMtrend(polydeg=2) + RMwhittle(nu=NA, scale=0.5)
estimated <- RFfit(model=model.est, x=x, y=x,
data=simulated@data, mle.methods="ml")
}}
\dontshow{FinalizeExample()}}
\keyword{spatial}
\keyword{models}
|