File: RPsmith.Rd

package info (click to toggle)
r-cran-randomfields 3.3.14-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,916 kB
  • sloc: cpp: 52,159; ansic: 3,015; makefile: 2; sh: 1
file content (123 lines) | stat: -rw-r--r-- 3,455 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
\name{Smith}
\alias{RPsmith}
\alias{mixed moving maxima}
\alias{moving maxima}
\alias{M2}
\alias{M3}

\title{(Mixed) Moving Maxima}
\description{
  \command{RPsmith} defines a moving maximum process or a mixed moving
  maximum process with finite number of shape functions.
}

\usage{
RPsmith(shape, tcf, xi, mu, s)
}

\arguments{
 \item{shape}{an \command{\link{RMmodel}} giving the spectral function}
 \item{tcf}{an \command{\link{RMmodel}} specifying the
   extremal correlation function; either \code{shape} or \code{tcf} must
   be given. If \code{tcf} is given a shape function is tried to be 
   constructed via the \command{\link{RMm2r}} construction of
   deterministic, monotone functions.
 }
 \item{xi,mu,s}{the extreme value index, the location parameter and the
   scale parameter, respectively, of the generalized extreme value
   distribution. See Details.
 }

}

\note{
  IMPORTANT: For consistency reasons with the geostatistical definitions
  in this package the scale argument differs froms the original
  definition of the Smith model! See the example below.
  
  \command{RPsmith} depends on \command{\link{RRrectangular}}
  and its arguments.

  Advanced options
   are \code{maxpoints} and \code{max_gauss}, see
   \command{\link{RFoptions}}.
}

\details{
  \GEV
 
 It simulates max-stable processes \eqn{Z} that are referred to as
 \dQuote{Smith model}.
 \deqn{Z(x) = \max_{i=1}^\infty X_i Y_i(x-W_i),
 }{Z(x) = max_{i=1, 2, ...} X_i * Y_i(x - W_i),}
 where \eqn{(W_i, X_i)} are the points of a Poisson point process on 
 \eqn{\R^d \times (0, \infty)}{R^d x (0, \infty)} with intensity
 \eqn{dw * c/x^2 dx} and \eqn{Y_i \sim Y}{Y_i ~ Y} are iid measurable
 random functions with
 \eqn{E[\int \max(0, Y(x)) dx] < \infty}{E[int max(0, Y(x)) dx ] < \infty}. 
 The constant \eqn{c} is chosen such that \eqn{Z} has standard Frechet
 margins.
 }
 
\me

\references{
  \itemize{
    \item Haan, L. (1984) 
    A spectral representation for max-stable processes.
    \emph{Ann. Probab.}, \bold{12},
    1194-1204.
    
    \item Smith, R.L. (1990) Max-stable processes and spatial extremes
    Unpublished Manuscript.
    }
}

\seealso{
  \command{\link{Advanced RMmodels}},
  \command{\link{Auxiliary RMmodels}},
  \command{\link{RMmodel}},
  \command{\link{RPbernoulli}},
  \command{\link{RPgauss}},
  \link{maxstable},
  \command{\link{maxstableAdvanced}}.
}

\keyword{spatial}

 
\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

model <- RMball()
x <- seq(0, 1000, 0.2)
z <- RFsimulate(RPsmith(model, xi=0), x)
plot(z)
hist(z@data$variable1, 50, freq=FALSE)
curve(exp(-x) * exp(-exp(-x)), from=-3, to=8, add=TRUE)

## 2-dim
x <- seq(0, 10, 0.1) 
z <- RFsimulate(RPsmith(model, xi=0), x, x)
plot(z)

## original Smith model
x <- seq(0, 10, 0.05)
model <- RMgauss(scale = sqrt(2)) # !! cf. definition of RMgauss
z <- RFsimulate(RPsmith(model, xi=0), x, x)
plot(z)

\dontshow{\dontrun{
## original Smith model at arbitrary locations
n <- 200
model <- RMgauss(scale = sqrt(2)) # !! cf. definition of RMgauss
z <- RFsimulate(RPsmith(model, xi=0), runif(n, 0, 10), runif(0, 0, 10))
plot(z)
}}


## for some more sophisticated models see 'maxstableAdvanced'

\dontshow{FinalizeExample()}}