1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
|
\name{RRunif}
\alias{RRunif}
\title{Uniform Distribution in Higher Dimensions}
\description{
The model refers to the d-dimensional uniform distribution on a rectangular
window.
}
\usage{
RRunif(min, max, normed)
}
\arguments{
\item{min,max}{lower and upper corner of a rectangular window}
\item{normed}{logical with default value \code{TRUE}.
Advanced. If \code{FALSE} then the indicator function
for the window is not normed to get a probability
distribution. Nonetheless, random drawing from the distribution
still works.
}
}
\details{
In the one-dimensional case it has the same effect as
\code{\link{RRdistr}(\link[=runif]{unif}(min=min, max=max, log=log))}.
}
\value{
\command{\link{RRunif}} returns an object of class \code{\link[=RMmodel-class]{RMmodel}}.
}
\me
\seealso{
\command{\link{RMmodel}},
\command{\link{RRdistr}},
\command{\link{RRgauss}},
\command{\link{RRspheric}}.
}
\keyword{spatial}
\keyword{models}
\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
## uniform distribution on [0,2] x [-2, -1]
RFrdistr(RRunif(c(0, -2), c(2, -1)), n=5, dim=2)
RFpdistr(RRunif(c(0, -2), c(2, -1)), q=c(1, -1.5), dim=2)
RFddistr(RRunif(c(0, -2), c(2, -1)), x=c(1, -1.5), dim=2)
\dontshow{FinalizeExample()}
}
|