File: obsolete2.Rd

package info (click to toggle)
r-cran-randomfields 3.3.14-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 4,916 kB
  • sloc: cpp: 52,159; ansic: 3,015; makefile: 2; sh: 1
file content (154 lines) | stat: -rw-r--r-- 5,793 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
\name{Obsolete Functions Version 2}
\alias{CondSimu}
\alias{Covariance}
\alias{CovarianceFct}
\alias{CovMatrix}
\alias{DeleteRegister}
\alias{DeleteAllRegisters}
\alias{DoSimulateRF}
\alias{EmpiricalVariogram}
\alias{fitvario}
\alias{fractal.dim}
\alias{GaussRF}
\alias{hurst}
\alias{InitSimulateRF}
\alias{InitGaussRF}
\alias{InitMaxStableRF}
\alias{Kriging}
\alias{MaxStableRF}
\title{Obsolete functions Version 2}
\alias{RFparameters}
\alias{Variogram}
\description{
  This part gives the obsolete functions of RandomFields Version 2
  that are \bold{not maintained} anymore.
}
\usage{
Covariance(x, y = NULL, model, param = NULL, dim = NULL,
 Distances, fctcall = c("Cov", "Variogram", "CovMatrix"))
CovarianceFct(x, y = NULL, model, param = NULL, dim =NULL,
 Distances, fctcall = c("Cov", "Variogram", "CovMatrix"))
CovMatrix(x, y = NULL, model, param = NULL, dim = NULL, Distances)
DeleteAllRegisters()
DeleteRegister(nr=0)
DoSimulateRF(n = 1, register = 0, paired=FALSE, trend=NULL) 
InitSimulateRF(x, y = NULL, z = NULL, T=NULL, grid=!missing(gridtriple),
 model, param, trend, method = NULL, register = 0,
 gridtriple, distribution=NA)
InitGaussRF(x, y = NULL, z = NULL, T=NULL, grid=!missing(gridtriple),
 model, param, trend=NULL, method = NULL, register = 0, gridtriple) 
GaussRF(x, y = NULL, z = NULL, T=NULL, grid=!missing(gridtriple), model,
 param, trend=NULL, method = NULL, n = 1, register = 0, gridtriple,
 paired=FALSE, PrintLevel=1, Storing=TRUE, ...) 
Variogram(x, model, param = NULL, dim = NULL, Distances)
InitMaxStableRF(x, y = NULL, z = NULL, grid=NULL, model, param, maxstable,
 method = NULL, register = 0, gridtriple = FALSE)
MaxStableRF(x, y = NULL, z = NULL, grid=NULL, model, param, maxstable,
 method = NULL, n = 1, register = 0, gridtriple = FALSE, ...)
EmpiricalVariogram(x, y = NULL, z = NULL, T=NULL, data, grid=NULL, bin,
 gridtriple = FALSE, phi, theta, deltaT)
Kriging(krige.method, x, y=NULL, z=NULL, T=NULL, grid=NULL, gridtriple=FALSE,
 model, param, given, data, trend=NULL,pch=".", return.variance=FALSE,
 allowdistanceZero = FALSE, cholesky=FALSE) 
CondSimu(krige.method, x, y=NULL, z=NULL, T=NULL, grid=NULL, gridtriple=FALSE,
 model, param, method=NULL, given, data, trend=NULL, n=1, register=0, 
 err.model=NULL, err.param=NULL, err.method=NULL, err.register=1, 
 tol=1E-5, pch=".", paired=FALSE, na.rm=FALSE) 
RFparameters(...)
hurst(x, y = NULL, z = NULL, data, gridtriple = FALSE, sort=TRUE,
 block.sequ = unique(round(exp(seq(log(min(3000, dim[1] / 5)),
 log(dim[1]), len=min(100, dim[1]))))),
 fft.m = c(1, min(1000, (fft.len - 1) / 10)),
 fft.max.length = Inf, 
 method=c("dfa", "fft", "var"), mode=c("plot", "interactive"),%ok
 pch=16, cex=0.2, cex.main=0.85,
 PrintLevel=RFoptions()$basic$printlevel,height=3.5, ...)
fractal.dim(x, y = NULL, z = NULL, data, grid=TRUE, gridtriple = FALSE,
 bin, vario.n=5, sort=TRUE, fft.m = c(65, 86), fft.max.length=Inf,
 fft.max.regr=150000, fft.shift = 50, method=c("variogram", "fft"),
 mode=c("plot", "interactive"), pch=16, cex=0.2, cex.main=0.85,%ok
 PrintLevel = RFoptions()$basic$printlevel, height=3.5, ...)
fitvario(x, y=NULL, z=NULL, T=NULL, data, model, param, lower=NULL,
 upper=NULL, sill=NA, grid=!missing(gridtriple), gridtriple=FALSE, ...)
}
\arguments{
 \item{x, y, model, param, dim, Distances, fctcall, n, register,
 paired, trend, z, T, grid, method, gridtriple, distribution,
 PrintLevel, Storing, ..., maxstable, data, bin, 
	phi, theta, deltaT, krige.method, pch, return.variance,
 allowdistanceZero, cholesky, given,
	err.model, err.param, err.method, err.register, 
	tol, na.rm, sort,
	block.sequ, fft.m, fft.max.length, mode,
	cex, cex.main, height, vario.n, fft.max.regr, fft.shift,
	lower, upper, sill, nr}{
	As the functions are obsolete, all these arguments
	are not documented anymore.
 }
}
\value{
 See \sQuote{\href{../doc/version.pdf}{version2}}
 for details on these obsolete commands.
}
\seealso{
  The functions that should be used instead are, for instance,
 \command{\link{RFcov}}, \command{\link{RFcovmatrix}},
 \command{\link{RFvariogram}}, \command{\link{RFsimulate}},
 \command{\link{RFinterpolate}},
 \command{\link{RFvariogram}}, \command{\link{RFfit}},
 \command{\link{RFoptions}}, \command{\link{RFhurst}},
 \command{\link{RFfractaldim}}

 See \sQuote{\href{../doc/version.pdf}{version2}}
 for details on the obsolete commands.
 
}

\me


\examples{\dontshow{StartExample()}
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

%\dontshow{RFoptions(internal.warn_newstyle=FALSE,
%internal.warn_oldstyle=FALSE)}



## no examples given, as command is obsolete
\dontshow{\dontrun{ # ok
x <- seq(0, 5, 0.05) 
model <- "exp"
param <- c(0, 1, 0, 1)

plot(x, Covariance(x, model=model, param=param))
plot(x, Variogram(x, model=model, param=param))

z <- GaussRF(x, model=model, param=param)
plot(x, z, type="l")

z <- GaussRF(x=x, y=x, model=model, param=param, grid=TRUE)
image(x, x, z)
EmpiricalVariogram(x, x, data=z)

g1 <- runif(5) * 2
g2 <- runif(5) * 2
z <- GaussRF(g1, g2, grid=FALSE, model=model, param=param)
k <- Kriging("S", x, x, given=cbind(g1, g2),
        data=z, model=model, param=param)
Print(range(z), range(k))
col <- rainbow(20)
zlim <- range(z, k)
image(x, x, k, col=col, zlim=zlim)
points(g1, g2, pch=20,cex=2)
points(g1, g2, pch=16, col=col[pmax(1, (z-zlim[1]) / diff(zlim) * 20 )])
#%   farben stimmen in etwa.

estparam <- rep(NA, 4)
v <- fitvario(x=g1, y=g2, grid=FALSE, model=model, param=estparam, data=z)
Print(v$ml, v$ml$ml.value)
}}
\dontshow{FinalizeExample()}}

\keyword{spatial}