File: bckslvmodified.f

package info (click to toggle)
r-cran-randomfieldsutils 1.2.5-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,956 kB
  • sloc: ansic: 7,119; cpp: 6,437; fortran: 3,403; makefile: 7; sh: 1
file content (200 lines) | stat: -rw-r--r-- 7,567 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
c 
c     Authors:
c     Reinhard Furrer
c       
c  Copyright (C) 2017 -- 2017 Reinhard Furrer
c 
c This program is free software; you can redistribute it and/or
c modify it under the terms of the GNU General Public License
c as published by the Free Software Foundation; either version 3
c of the License, or (at your option) any later version.
c 
c This program is distributed in the hope that it will be useful,
c but WITHOUT ANY WARRANTY; without even the implied warranty of
c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
c GNU General Public License for more details.
c 
c You should have received a copy of the GNU General Public License
c along with this program; if not, write to the Free Software
c Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.  


      subroutine backsolve(m,nsuper,nrhs,lindx,xlindx,lnz,
     &                   xlnz,xsuper,b)
c see below...
      implicit none

      integer m,nsuper,nrhs,lindx(*),xlindx(m+1),
     &        xlnz(m+1),xsuper(m+1)
      double precision lnz(*),b(m,nrhs)
      integer j
      do j = 1,nrhs
         call blkslb(nsuper,xsuper,xlindx,lindx,xlnz,lnz,b(1,j))
      enddo
      return
      end


      subroutine forwardsolve(m,nsuper,nrhs,lindx,xlindx,
     &  lnz,xlnz,xsuper,b)
c INPUT:
c     m -- the number of column in the matrix
c     lindx -- an nsub-vector of interger which contains, in 
c           column major oder, the row subscripts of the nonzero
c           entries in L in a compressed storage format
c     xlindx -- an nsuper-vector of integer of pointers for lindx
c     lnz -- First contains the non-zero entries of d; later
c            contains the entries of the Cholesky factor
c     xlnz -- column pointer for L stored in lnz
c     xsuper -- array of length m+1 containing the supernode
c               partitioning
c     b -- the rhs of the equality constraint
c OUTPUT:
c     b -- the solution
      
      implicit none

      integer m,nsuper,nrhs,lindx(*),xlindx(m+1),
     &        xlnz(m+1),xsuper(m+1)
      double precision lnz(*),b(m,nrhs)
      integer j
c
      do j = 1,nrhs
         call blkslf(nsuper,xsuper,xlindx,lindx,xlnz,lnz,b(1,j))
      enddo
      return
      end
C***********************************************************************
C***********************************************************************
C
C   Version:        0.4
C   Last modified:  December 27, 1994
C   Authors:        Esmond G. Ng and Barry W. Peyton
C                   Slight modification by Reinhard Furrer 
C
C   Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C
C***********************************************************************
      subroutine pivotforwardsolve(m,nsuper,nrhs,lindx,xlindx,lnz,
     &                   xlnz,invp,perm,xsuper,newrhs,sol,b)
c Sparse least squares solver via Ng-Peyton's sparse Cholesky 
c    factorization for sparse symmetric positive definite
c INPUT:
c     m -- the number of column in the design matrix X
c     nsubmax -- upper bound of the dimension of lindx
c     lindx -- an nsub-vector of interger which contains, in 
c           column major oder, the row subscripts of the nonzero
c           entries in L in a compressed storage format
c     xlindx -- an nsuper-vector of integer of pointers for lindx
c     lnz -- First contains the non-zero entries of d; later
c            contains the entries of the Cholesky factor
c     xlnz -- column pointer for L stored in lnz
c     invp -- an m-vector of integer of inverse permutation
c             vector
c     perm -- an m-vector of integer of permutation vector
c     xsuper -- array of length m+1 containing the supernode
c               partitioning
c     newrhs -- extra work vector for right-hand side and
c               solution
c     sol -- the least squares solution
c     b -- an m-vector, usualy the rhs of the equality constraint
c          X'a = (1-tau)X'e in the rq setting
c OUTPUT:
c     y -- an m-vector of least squares solution
c WORK ARRAYS:
c     b -- an m-vector, usually the rhs of the equality constraint
c          X'a = (1-tau)X'e in the rq setting
      implicit none

      integer m,nsuper,nrhs,lindx(*),xlindx(m+1),
     &        invp(m),perm(m),xlnz(m+1), xsuper(m+1)
      integer i,j
      double precision lnz(*),b(m,nrhs),newrhs(m),sol(m,nrhs)

      do j = 1,nrhs
         do i = 1,m
            newrhs(i) = b(perm(i),j)
         enddo
         call blkslf(nsuper,xsuper,xlindx,lindx,xlnz,lnz,newrhs)
         do i = 1,m
            sol(i,j) = newrhs(invp(i))
         enddo
      enddo
      return
      end
C***********************************************************************
      subroutine pivotbacksolve(m,nsuper,nrhs,lindx,xlindx,lnz,
     &                   xlnz,invp,perm,xsuper,newrhs,sol,b)
c     see above
      implicit none

      integer m, nsuper,nrhs,lindx(*),xlindx(m+1),
     &        invp(m),perm(m),xlnz(m+1), xsuper(m+1)
      double precision lnz(*),b(m,nrhs),newrhs(m),sol(m,nrhs)
      integer i,j
      do j = 1,nrhs
         do i = 1,m
            newrhs(i) = b(perm(i),j)
         enddo
         call blkslb(nsuper,xsuper,xlindx,lindx,xlnz,lnz,newrhs)
         do i = 1,m
            sol(i,j) = newrhs(invp(i))
         enddo
      enddo
      return
      end
C***********************************************************************
      subroutine backsolves(m,nsuper,nrhs,lindx,xlindx,lnz,
     &                   xlnz,invp,perm,xsuper,newrhs,b)
c MODIFIED, overwritting b now!! (M.Schlather, 4.4.15)
c
c Sparse least squares solver via Ng-Peyton's sparse Cholesky 
c    factorization for sparse symmetric positive definite
c INPUT:
c     m -- the number of column in the design matrix X
c     nsubmax -- upper bound of the dimension of lindx
c     lindx -- an nsub-vector of interger which contains, in 
c           column major oder, the row subscripts of the nonzero
c           entries in L in a compressed storage format
c     xlindx -- an nsuper-vector of integer of pointers for lindx
c     nnzlmax -- the upper bound of the non-zero entries in
c                L stored in lnz, including the diagonal entries
c     lnz -- First contains the non-zero entries of d; later
c            contains the entries of the Cholesky factor
c     xlnz -- column pointer for L stored in lnz
c     invp -- an m-vector of integer of inverse permutation
c             vector
c     perm -- an m-vector of integer of permutation vector
c     xsuper -- array of length m+1 containing the supernode
c               partitioning
c     newrhs -- extra work vector for right-hand side and
c               solution
c    ( sol -- the least squares solution)
c     b -- an m-vector, usualy the rhs of the equality constraint
c          X'a = (1-tau)X'e in the rq setting
c OUTPUT:
c     y -- an m-vector of least squares solution
c WORK ARRAYS:
c     b -- an m-vector, usually the rhs of the equality constraint
c          X'a = (1-tau)X'e in the rq setting
      implicit none

      integer m,nsuper,nrhs,lindx(*),xlindx(m+1),
     &        invp(m),perm(m),xlnz(m+1), xsuper(m+1)
      double precision lnz(*),b(m,nrhs),newrhs(m)

      integer i,j
      do j = 1,nrhs
         do i = 1,m
           newrhs(i) = b(perm(i),j) 
         enddo
         call blkslv(nsuper,xsuper,xlindx,lindx,xlnz,lnz,newrhs)
         do i = 1,m
            b(i,j) = newrhs(invp(i))
         enddo
      enddo
      return
      end