1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
combine <- function(...) {
pad0 <- function(x, len) c(x, rep(0, len-length(x)))
padm0 <- function(x, len) rbind(x, matrix(0, nrow=len-nrow(x),
ncol=ncol(x)))
rflist <- list(...)
areForest <- sapply(rflist, function(x) inherits(x, "randomForest"))
if (any(!areForest)) stop("Argument must be a list of randomForest objects")
## Use the first component as a template
rf <- rflist[[1]]
classRF <- rf$type == "classification"
trees <- sapply(rflist, function(x) x$ntree)
ntree <- sum(trees)
rf$ntree <- ntree
nforest <- length(rflist)
haveTest <- ! any(sapply(rflist, function(x) is.null(x$test)))
## Check if predictor variables are identical.
vlist <- lapply(rflist, function(x) rownames(importance(x)))
numvars <- sapply(vlist, length)
if (! all(numvars[1] == numvars[-1]))
stop("Unequal number of predictor variables in the randomForest objects.")
for (i in seq_along(vlist)) {
if (! all(vlist[[i]] == vlist[[1]]))
stop("Predictor variables are different in the randomForest objects.")
}
## Combine the forest component, if any
haveForest <- sapply(rflist, function(x) !is.null(x$forest))
if (all(haveForest)) {
nrnodes <- max(sapply(rflist, function(x) x$forest$nrnodes))
rf$forest$nrnodes <- nrnodes
rf$forest$ndbigtree <-
unlist(sapply(rflist, function(x) x$forest$ndbigtree))
rf$forest$nodestatus <-
do.call("cbind", lapply(rflist, function(x)
padm0(x$forest$nodestatus, nrnodes)))
rf$forest $bestvar <-
do.call("cbind",
lapply(rflist, function(x)
padm0(x$forest$bestvar, nrnodes)))
rf$forest$xbestsplit <-
do.call("cbind",
lapply(rflist, function(x)
padm0(x$forest$xbestsplit, nrnodes)))
rf$forest$nodepred <-
do.call("cbind", lapply(rflist, function(x)
padm0(x$forest$nodepred, nrnodes)))
tree.dim <- dim(rf$forest$treemap)
if (classRF) {
rf$forest$treemap <-
array(unlist(lapply(rflist, function(x) apply(x$forest$treemap, 2:3,
pad0, nrnodes))),
c(nrnodes, 2, ntree))
} else {
rf$forest$leftDaughter <-
do.call("cbind",
lapply(rflist, function(x)
padm0(x$forest$leftDaughter, nrnodes)))
rf$forest$rightDaughter <-
do.call("cbind",
lapply(rflist, function(x)
padm0(x$forest$rightDaughter, nrnodes)))
}
rf$forest$ntree <- ntree
if (classRF) rf$forest$cutoff <- rflist[[1]]$forest$cutoff
} else {
rf$forest <- NULL
}
if (classRF) {
## Combine the votes matrix:
rf$votes <- 0
rf$oob.times <- 0
areVotes <- all(sapply(rflist, function(x) any(x$votes > 1, na.rf=TRUE)))
if (areVotes) {
for(i in 1:nforest) {
rf$oob.times <- rf$oob.times + rflist[[i]]$oob.times
rf$votes <- rf$votes +
ifelse(is.na(rflist[[i]]$votes), 0, rflist[[i]]$votes)
}
} else {
for(i in 1:nforest) {
rf$oob.times <- rf$oob.times + rflist[[i]]$oob.times
rf$votes <- rf$votes +
ifelse(is.na(rflist[[i]]$votes), 0, rflist[[i]]$votes) *
rflist[[i]]$oob.times
}
rf$votes <- rf$votes / rf$oob.times
}
rf$predicted <- factor(colnames(rf$votes)[max.col(rf$votes)],
levels=levels(rf$predicted))
if(haveTest) {
rf$test$votes <- 0
if (any(rf$test$votes > 1)) {
for(i in 1:nforest)
rf$test$votes <- rf$test$votes + rflist[[i]]$test$votes
} else {
for (i in 1:nforest)
rf$test$votes <- rf$test$votes +
rflist[[i]]$test$votes * rflist[[i]]$ntree
}
rf$test$predicted <-
factor(colnames(rf$test$votes)[max.col(rf$test$votes)],
levels=levels(rf$test$predicted))
}
} else {
rf$predicted <- 0
for (i in 1:nforest) rf$predicted <- rf$predicted +
rflist[[i]]$predicted * rflist[[i]]$ntree
rf$predicted <- rf$predicted / ntree
if (haveTest) {
rf$test$predicted <- 0
for (i in 1:nforest) rf$test$predicted <- rf$test$predicted +
rflist[[i]]$test$predicted * rflist[[i]]$ntree
rf$test$predicted <- rf$test$predicted / ntree
}
}
## If variable importance is in all of them, compute the average
## (weighted by the number of trees in each forest)
have.imp <- !any(sapply(rflist, function(x) is.null(x$importance)))
if (have.imp) {
rf$importance <- rf$importanceSD <- 0
for(i in 1:nforest) {
rf$importance <- rf$importance +
rflist[[i]]$importance * rflist[[i]]$ntree
## Do the same thing with SD of importance, though that's not
## exactly right...
rf$importanceSD <- rf$importanceSD +
rflist[[i]]$importanceSD^2 * rflist[[i]]$ntree
}
rf$importance <- rf$importance / ntree
rf$importanceSD <- sqrt(rf$importanceSD / ntree)
haveCaseImp <- !any(sapply(rflist, function(x)
is.null(x$localImportance)))
## Average casewise importance
if (haveCaseImp) {
rf$localImportance <- 0
for (i in 1:nforest) {
rf$localImportance <- rf$localImportance +
rflist[[i]]$localImportance * rflist[[i]]$ntree
}
rf$localImportance <- rf$localImportance / ntree
}
}
## If proximity is in all of them, compute the average
## (weighted by the number of trees in each forest)
have.prox <- !any(sapply(rflist, function(x) is.null(x$proximity)))
if (have.prox) {
rf$proximity <- 0
for(i in 1:nforest)
rf$proximity <- rf$proximity + rflist[[i]]$proximity * rflist[[i]]$ntree
rf$proximity <- rf$proximity / ntree
}
## if there are inbag matrices, combine them as well.
hasInBag <- all(sapply(rflist, function(x) !is.null(x$inbag)))
if (hasInBag) rf$inbag <- do.call(cbind, lapply(rflist, "[[", "inbag"))
## Set confusion matrix and error rates to NULL
if (classRF) {
rf$confusion <- NULL
rf$err.rate <- NULL
if (haveTest) {
rf$test$confusion <- NULL
rf$err.rate <- NULL
}
} else {
rf$mse <- rf$rsq <- NULL
if (haveTest) rf$test$mse <- rf$test$rsq <- NULL
}
rf
}
|