File: varImpPlot.Rd

package info (click to toggle)
r-cran-randomforest 4.7-1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 496 kB
  • sloc: ansic: 1,897; fortran: 366; makefile: 2
file content (40 lines) | stat: -rw-r--r-- 1,174 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
\name{varImpPlot}
\alias{varImpPlot}
\title{Variable Importance Plot}
\description{
  Dotchart of variable importance as measured by a Random Forest
}
\usage{
varImpPlot(x, sort=TRUE, n.var=min(30, nrow(x$importance)),
           type=NULL, class=NULL, scale=TRUE, 
           main=deparse(substitute(x)), ...) 
}
\arguments{
  \item{x}{An object of class \code{randomForest}.}
  \item{sort}{Should the variables be sorted in decreasing order of
    importance?}
  \item{n.var}{How many variables to show? (Ignored if
    \code{sort=FALSE}.)}
  \item{type, class, scale}{arguments to be passed on to
    \code{\link{importance}}}
  \item{main}{plot title.}
  \item{...}{Other graphical parameters to be passed on to
    \code{\link{dotchart}}.}
}
\value{
  Invisibly, the importance of the variables that were plotted.
}
\seealso{
  \code{\link{randomForest}}, \code{\link{importance}}
}
\examples{
set.seed(4543)
data(mtcars)
mtcars.rf <- randomForest(mpg ~ ., data=mtcars, ntree=1000, keep.forest=FALSE,
                          importance=TRUE)
varImpPlot(mtcars.rf)
}
\author{Andy Liaw \email{andy_liaw@merck.com}}
\keyword{regression}
\keyword{classif}
\keyword{tree}