1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
|
# Peter Langfelder's additions and changes
# 1.06:
# . Add the capability to work with factors. There are a few issues with this:
# 1. Sampling: all levels of a factor should be present in every bag. If they are not, it will lead to
# problems when the factor has more than 2 levels: n-1 levels are present in the bag so the factor
# variable is retained for the models, and the predict() function will throw an error.
# 2. Generating interactions: I should be able to use the function model.matrix to generate the
# interactions. It works automatically with factors, uses formula as input, and basically generates the
# same thing that my .generateInteractions will do with numeric variables. The workflow for generating
# interactions should be this: prepare the formula as a character string and call terms() on it. Part of
# the terms() value looks a lot like my interaction matrix. Save the result as part of the output for
# each bag; call model.matrix on it to get the actual interaction variables. These can be used to do
# variable selection and final model fitting.
#
# Alternatively, can do this on my own. First, binarize all categorical variables into values 0, 1. Then
# generate interactions as before except binary variables can only enter with powers 0 or 1. This will
# entail keeping track of which variables are binary, and changing the interaction matrix generator
# appropriately. Further, for prediction on test data, need to keep information on the original levels
# of the categorical predictors so the test set predictors can be appropriately binarized.
# Note that there's no need to generate interactions of binary variables in a special way; a simple
# product of binary indicators is enough. This is obvious for 2 binary variables a, b: for example,
# a & !b equals a-a*b. By induction this is also true for any number of binary variables: a combination
# of n variables can be expressed as a combination of 2 variables: the combination of n-1 variables and
# the last variable, so if I can express combinations of n-1 variables, I can also express combinations
# of n variables.
# . To accomodate categorical variables:
# Will keep track of which variables were categorical, what their levels were, and which
# prediction variable they correspond to.
# Put the binarized categorical variables into a separate xCat variable for the bagged prediction? They
# will have to be handled with more care for bagging and during prediction anyway.
# . convert code to x being a data frame. This is necessary to correctly handle possible factors in the
# input x and xTest.
# . Should also add an option to in-/exclude self-interactions since such terms are non-standard in normal
# statistical model fitting
# Main change: unifying all levels of interactions in a single function.
# Introducing the concept of an interaction matrix that specifies how the input
# features get multiplied into the predictors used in the underlying models.
# The matrix has maxInteractionOrder rows and as many columns as needed. Each
# column corresponds to one term in for the (g)lm models. The entries in a
# column give indices of the input features that are multiplied in the term; 0
# index means "none". Thus, if one has 3 input features x1, x2, x3, an interaction
# matrix with up to 3-way interactions may look like (first line is column name)
# c1 c2 c3 c4 c5 c6 c7
# 1 2 3 1 1 1 2
# 0 0 0 1 2 3 2
# 0 0 0 0 2 0 0
# This means that term 1 (column 1) is x1, term 2 is x2, term 3 is x3, term 4 is
# x1*x1, term5 is x1*x2*x2, term 6 in x1*x3, term 7 is x2*x2. No particular order
# is assumed in any of the rows or columns. The function that generates this
# matrix, named .interactionMatrix,
# also assigns unique names to each column which is helpful when identifying
# individual terms and extracting their content.
#
# The advantage of this representation is that it makes it very convenient to
# actually generate the interaction terms from given numeric data. The generation
# of the interactions is implemented in function .generateInteractions.
#
# Furthermore, given an interaction matrix, it is easy to count the occurences of
# each input feature. This is implemented in function .countsInInteractionMatrix
# which counts the number of times each input feature appears in each level of
# interactions in a given interaction matrix.
# . Removed scaling of predictors
## change to 3.0
# 1. function name change to randomGLM
# 2. parameter change: corFncForCandidateCovariates, corOptionsForCandidateCovariates
# 3. change all "gene" to "feature"
# 4. add interceptOfForwardRegression
# For now, include required packages
#library(gtools)
#library(MASS)
#=====================================================
#
# Helper functions
#
#=====================================================
.spaste = function(...)
{
paste(..., sep = "");
}
# prettier print than the standard "print" function.
.cat.nl = function(...)
{
cat(.spaste(..., "\n"));
}
.prependZeros = function(x, len = max(nchar(x)))
{
lengths = nchar(x);
if (len < max(lengths)) stop("Some entries of 'x' are too long.");
out = as.character(x);
n = length(x);
for (i in 1:n) if (lengths[i] < len)
out[i] = .spaste( paste(rep("0", len-lengths[i]), collapse = ""),
x[i]);
out;
}
.is.wholenumber = function(x, tol = .Machine$double.eps^0.5) { abs(x - round(x)) < tol }
#=====================================================
#
# Generator of interactions
#
#=====================================================
# My own function for generating combinations since the one in gtools fails with large n's.
# Combinations with repeats
.combinationsWithReplacement = function(n, order)
{
if (order==1) return(matrix(c(1:n), 1, n));
# If order is not 1, calculate result using recursion
nOut = choose(n+order-1, order);
out = matrix(0, order, nOut);
sub = .combinationsWithReplacement(n, order-1)
index = 1;
for (i in 1:n)
{
n1 = ncol(sub);
out[, index:(index + n1 - 1)] = rbind( rep(i, ncol(sub)), sub);
index = index + n1;
sub = sub[, colSums(sub==i) == 0, drop = FALSE];
}
out;
}
# Assume that order is at most n. If not, order will be adjusted
.combinationsWithoutReplacement = function(n, order)
{
if (order > n) order = n;
if (order==1) return(matrix(c(1:n), 1, n));
# If order is not 1, calculate result using recursion
nOut = choose(n, order);
out = matrix(0, order, nOut);
sub = .combinationsWithoutReplacement(n-1, order-1) + 1
index = 1;
for (i in 1:(n-1))
{
n1 = ncol(sub);
if (n1 > 0)
{
out[, index:(index + n1 - 1)] = rbind( rep(i, ncol(sub)), sub);
index = index + n1;
sub = sub[, colSums(sub==i+1) == 0, drop = FALSE];
}
}
out;
}
.combinations = function(nWith, nWithout, order)
{
nAll = nWith + nWithout;
if (order==1) return(matrix(c(1:nAll), 1, nAll));
if (nWith==0) return (.combinationsWithoutReplacement(nWithout, order));
nOut = 0;
for (o in 0:max(order, nWithout))
nOut = nOut + choose(nWith+o-1, o) * choose(nWithout, order-o)
out = matrix(0, order, nOut);
sub = .combinations(nWith, nWithout, order-1);
index = 1;
for (i in 1:(nAll- (nWithout>0)))
{
wr = i<=nWith;
n1 = ncol(sub);
if (n1 > 0)
{
out[, index:(index + n1 - 1)] = rbind( rep(i, ncol(sub)), sub);
index = index + n1;
if (wr) {
sub = sub[, colSums(sub==i) == 0, drop = FALSE];
if (i==nWith & nWithout > 0)
sub = sub[, colSums(sub==i+1) == 0, drop = FALSE];
} else
sub = sub[, colSums(sub==i+1) == 0, drop = FALSE];
}
}
out;
}
# Generates an interaction matrix of all interactions up to specified maxOrder of
# variables indexed 1:nWith (with replacement) and (nWith+1):(nWithout) (without replacement).
# Optionally also sets column names with some flexibility.
# Empty slots in the matrix are marked with a zero.
.interactionMatrix = function(nWith, nWithout, maxOrder,
index.without,
setColNames = TRUE,
originalNames = c(1:(nWith+nWithout)),
featureSeparator = ".")
{
# if (maxOrder==1) return(matrix(c(1:(nWith+nWithout)), 1, nWith + nWithout));
combs = .combinations(nWith + 1, nWithout, maxOrder)[, -1, drop = FALSE];
# drop the 1 1 1 1... column (intercept)
if (length(index.without) > 0)
{
generatedOrder = c(1:(nWith + nWithout +1));
targetOrder = c(generatedOrder[-(index.without+1)], generatedOrder[(index.without+1)]);
out = targetOrder[combs];
dim(out) = dim(combs);
} else
out = combs;
# Perform a few tricks to get the order of the variables nice.
# Move the number 1 variable to last
last = nWith + nWithout + 2;
out[combs==1] = last;
out = out-1;
# Flip the row order to have the empty slots on the bottom and sort each column of the matrix.
out = -t(matsort(-t(out [ c(maxOrder:1), , drop = FALSE])));
nameMatrix = array(c(originalNames, "")[out], dim = dim(out));
if (setColNames)
{
colnames = apply(nameMatrix, 2, function(x) {paste(x[x!=""], collapse = featureSeparator)});
colnames(out) = colnames;
}
rownames(out) = .spaste("Feature.", c(1:maxOrder));
# Get the order of columns
orderNames = 1:(nWith + nWithout);
orderNameMatrix = array(c(orderNames, 0)[out], dim = dim(out))
interactionOrder = colSums(out!=last-1);
orderDF = as.data.frame(cbind(interactionOrder, t(orderNameMatrix)));
order = do.call("order", orderDF);
out2 = out[, order, drop = FALSE];
out2[out2==last-1] = 0;
out2;
}
# utility function used by .generateInteractions below.
.generateInteractions.1row = function(x, interactionMatrix)
{
mat = x[interactionMatrix];
dim(mat) = dim(interactionMatrix);
apply(mat, 2, prod);
}
# Generates interactions from a given matrix of numeric data for "original" or
# "input" features and an interaction matrix.
# the trick to generate everything in one step is to add a dummy "feature" equal to
# 1 in all rows to the actual features and use it as "feature with index 0".
# The function optionally transfers the column names from the interaction matrix to
# the result, which makes the columns names of the result unique and somewhat
# descriptive.
# Since the function is always called with a valid interaction matrix, remove the code that generates it if
# it's empty.
.generateInteractions = function(x, #maxOrder, binaryIndex, includeSelfInteractions,
interactionMatrix, x1 = NULL,
setColNames = FALSE)
#originalNames= c(1:ncol(x)))
{
nAll = ncol(x);
#if (is.null(interactionMatrix))
#{
# if (includeSelfInteractions)
# {
# nWithout = length(binaryIndex)
# } else {
# nWithout = nAll;
# binaryIndex = 1:nAll;
# }
# nWith = nAll - nWithout;
# interactionMatrix = .interactionMatrix(nWith, nWithout, maxOrder, index.without = binaryIndex,
# setColNames = setColNames,
# originalNames = originalNames);
#
#
#}
maxOrder= nrow(interactionMatrix);
if (maxOrder==1)
{
# If maxOrder is 1, the result is simply x but the order may be changed.
x.int = x[, as.vector(interactionMatrix), drop = FALSE];
} else {
# The non-trivial case
if (is.null(x1)) x1 = cbind(x, rep(1, nrow(x)));
interactionMatrix[ interactionMatrix==0 ] = nAll+1;
# If the number of variables (columns in interactionMatrix) is 1, the result needs no transposing;
# otherwise it needs to be transposed.
if (ncol(interactionMatrix)==1)
{
x.int = as.matrix(apply(x1, 1, .generateInteractions.1row, interactionMatrix))
} else
x.int = t(apply(x1, 1, .generateInteractions.1row, interactionMatrix));
}
if (setColNames) colnames(x.int) = colnames(interactionMatrix);
x.int
}
# This function counts the number of times each input feature appears in each level
# of interactions in a given interaction matrix.
.countsInInteractionMatrix = function(im, nFeatures)
{
maxLevel = nrow(im);
counts = matrix(0, maxLevel, nFeatures);
level = maxLevel - colSums(im==0);
for (l in 1:maxLevel)
{
mat1 = im[ 1:l, level==l, drop = FALSE];
mat1.unique = sapply(as.data.frame(mat1), unique);
counts1 = table(unlist(mat1.unique));
where = as.numeric(names(counts1));
counts[ l, where] = as.numeric(counts1);
}
rownames(counts) = .spaste("Level.", c(1:maxLevel));
counts;
}
# Translate ordinal data using a dictionary
.translate = function(data, dictionary)
{
translated = dictionary[ match(data, dictionary[, 1]), 2];
attributes(translated) = attributes(data);
translated;
}
#=======================================================================================================
#
# binarizeCategoricalVar
#
#=======================================================================================================
# Assumes x is a vector but can easily be modified to also work with matrices.
.binarizeCategoricalVar = function(x, minCount = 3, val1 = 0, val2 = 1, nameSep = ".vs.", namePrefix = "",
nameForAll = "all",
ignore = NULL, includePairwise = TRUE,
includeLevelVsAll = FALSE, levels = NULL, levelOrder = NULL,
dropFirstLevelVsAll = FALSE,
dropUninformative = TRUE)
{
if (is.null(levels))
{
tab = table(x);
levels0 = names(tab);
tab = tab[ tab >= minCount & !(levels0 %in% ignore) ];
levels = names(tab);
}
if (!is.null(levelOrder))
{
order = match(levelOrder, levels);
order = order[is.finite(order)];
levels0 = levels[order];
levels1 = levels[ !levels %in% levels0];
levels = c(levels0, levels1);
}
nSamples = length(x);
nLevels = length(levels)
nBinaryVars = includePairwise * nLevels * (nLevels - 1)/2 +
includeLevelVsAll * (nLevels - dropFirstLevelVsAll)
if (nBinaryVars==0)
{
if (dropUninformative)
{
return(NULL)
} else {
out = as.matrix(rep(val2, nSamples));
colnames(out) = levels[1];
return(out);
}
}
out = matrix(NA, nSamples, nBinaryVars)
levelTable = matrix("", 2, nBinaryVars);
ind = 1;
names = rep("", nBinaryVars);
if (includePairwise)
{
for (v1 in 1:(nLevels-1)) for (v2 in (v1+1):nLevels)
{
out[ x==levels[v1], ind] = val1;
out[ x==levels[v2], ind] = val2;
names[ind] = .spaste(namePrefix, levels[v1], nameSep, levels[v2]);
levelTable[, ind] = levels[ c(v1, v2)];
ind = ind + 1;
}
}
if (includeLevelVsAll)
for (v1 in (1 + as.numeric(dropFirstLevelVsAll)):nLevels)
{
out[, ind] = c(val1, val2) [ as.numeric(x==levels[v1])+1 ];
names[ind] = .spaste(namePrefix, nameForAll, nameSep, levels[v1]);
levelTable[, ind] = c(nameForAll, levels[v1]);
ind = ind+1;
}
colnames(out) = names;
colnames(levelTable) = names;
rownames(levelTable) = .spaste("Value.", c(val1, val2));
attr(out, "includedLevels") = levelTable;
out;
}
# Split factors into independent binary variables. Leave out the last level.
# It is important to always leave out the same level, i.e. not make the left-out level dynamic.
.binarizeCategoricalColumns = function(df, categoricalIndicator, levels)
{
if (sum(categoricalIndicator)==0)
{
attr(df, "originalNames") = names(df);
attr(df, "indexOfOrigin") = c(1:ncol(df));
attr(df, "isCategorical") = rep(FALSE, ncol(df));
return(df);
}
if (length(levels)>0 && (length(levels)!=sum(categoricalIndicator)))
stop(".binarizeCategoricalColumns: Internal error: length of 'levels' is not the same as",
" length of 'categoricalFactors'");
if (is.null(levels))
{
binFactors.list = mapply(.binarizeCategoricalVar, x = df[categoricalIndicator],
nameForAll = names(df)[categoricalIndicator],
MoreArgs = list(minCount = 0, includePairwise = FALSE, includeLevelVsAll = TRUE,
nameSep = ".", dropFirstLevelVsAll = TRUE,
dropUninformative = FALSE), SIMPLIFY = FALSE);
} else
binFactors.list = mapply(.binarizeCategoricalVar, x = df[categoricalIndicator],
nameForAll = names(df)[categoricalIndicator], levels = levels,
MoreArgs = list(minCount = 0, includePairwise = FALSE, includeLevelVsAll = TRUE,
nameSep = ".", dropFirstLevelVsAll = TRUE, dropUninformative = FALSE), SIMPLIFY = FALSE);
factorNames = mapply(rep, names(df)[categoricalIndicator], sapply(binFactors.list, ncol), SIMPLIFY = FALSE)
if (any(!categoricalIndicator))
{
out.0 = cbind(df[ , !categoricalIndicator], do.call(cbind, binFactors.list));
names.0 = c(names(df)[!categoricalIndicator], unlist(factorNames));
order = unlist(lapply(names(df), function(x, l) {which(x==l)}, names.0));
df.out = as.data.frame(out.0[, order]);
} else {
df.out = as.data.frame(do.call(cbind, binFactors.list));
names.0 = unlist(factorNames);
order = unlist(lapply(names(df), function(x, l) {which(x==l)}, names.0));
}
names(df.out) = make.names(names(df.out));
names.0.ord = names.0[order];
attr(df.out, "originalNames") = names.0.ord;
attr(df.out, "indexOfOrigin") = match(names.0.ord, names(df));
attr(df.out, "isCategorical") = names(df.out)!=names.0.ord
df.out;
}
.nonMissingLevels = function(x)
{
u = unique(x);
sort(u[!is.na(u)]);
}
.nNonMissingLevels = function(x)
{
u = unique(x);
length(u) - sum(is.na(u));
}
.categoricalColumns = function(x, maxLevels)
{
nLevels = sapply(x, .nNonMissingLevels);
fac = sapply(x, is.factor);
nLevels <= maxLevels | fac;
}
#==========================================================================================
#
# .createModel and .predictFromModel
#
#==========================================================================================
# Depending on type and family, get the appropriate model for the formula and data.
.createModel = function(formula, modelData, weights, type, family)
{
switch(type, linear = lm(as.formula(formula), data = modelData, weights = weights, model = FALSE),
count = ,
binary = glm(as.formula(formula), data = modelData, weights = weights,
family = family, model = FALSE),
general = if (substring(family$family, 1, nchar("Negative Binomial"))=="Negative Binomial")
glm.nb(as.formula(formula), data = modelData, weights = weights,
link = match.fun(family$link), model = FALSE) else
glm(as.formula(formula), data = modelData, weights = weights,
family = family, model = FALSE),
survival = coxph(as.formula(formula), data = modelData, weights, model = FALSE))
}
.predictFromModel = function(model, newdata, modelType)
{
switch(modelType, linear = predict(model, newdata = newdata),
count = ,
binary = ,
general = predict(model, newdata = newdata, type = "response"),
survival = predict(model, newdata, type = "lp") )
}
.keepCoeffs = function(coeffs, modelType)
{
n = nrow(coeffs);
drop1 = rownames(coeffs)[1] == "(Intercept)"
if (drop1) return(2:n)
c(1:n);
}
.haveIntercept = function(coeffs, modelType)
{
return(rownames(coeffs)[1] == "(Intercept)")
}
#===========================================================================================
#
# .significance: calculate significance of features for outcome.
#
#===========================================================================================
.significance = function(x, y,
type, family,
corFncForCandidateCovariates, corOptionsForCandidateCovariates)
{
if (type=="survival")
{
y.cor = residuals(coxph(y~ 1, model = TRUE), type = "deviance");
} else
y.cor = y;
corOptionsForCandidateCovariates$x = x;
corOptionsForCandidateCovariates$y = y.cor;
as.vector(do.call(corFncForCandidateCovariates, corOptionsForCandidateCovariates));
}
#===========================================================================================
#
# Identify bad features: features with zero variance or with missing data.
# Requires the function colSds from matrixStats.
#
#===========================================================================================
.goodFeatures = function(x, returnIndex = FALSE)
{
indxMiss = colSums(is.na(x))>0
indxVar = colSds(as.matrix(x), na.rm = TRUE) ==0
out = !(indxMiss | indxVar);
if (returnIndex) which(out) else out;
}
#=====================================================
#
# forwardSelection
#
#=====================================================
# Note: yBag is assumed to be a matrix.
.forwardSelection = function(xBag, yBag, xTestBag,
weights.Bag,
classify,
binaryIndicator, # Need indicator instead of an index
maxInteractionOrder,
includeSelfinteractions,
nCandidateCovariates,
corFncForCandidateCovariates, corOptionsForCandidateCovariates,
NmandatoryCovariates,
interactionsMandatory,
keepModel,
interactionSeparatorForCoefNames,
type,
family,
responseName)
{
# remove features with missing values or variance=0
keepFeatures = .goodFeatures(xBag, returnIndex = FALSE);
if (!any(keepFeatures))
stop("All predictor features have been removed from a bag due to the presence of missing data or",
"\ndue to the feature being constant. Please remove constant features and ",
"\neither impute missing data or remove features and/or samples with missing data.");
xBag = xBag[, keepFeatures, drop=FALSE]
xTestBag = xTestBag[, keepFeatures, drop=FALSE]
binaryIndicator = binaryIndicator[keepFeatures];
nFeatures = ncol(xBag);
if (NmandatoryCovariates>0)
{
mandatCovars = c(1:NmandatoryCovariates)
# if removed features include mandatory cov, then NmandatoryCovariates should be decreased
mandatCovars = mandatCovars[ keepFeatures[mandatCovars]];
NmandatoryCovariates = length(mandatCovars);
} else
mandatCovars = numeric(0);
nonMandatCovars = setdiff( c(1:nFeatures), mandatCovars);
# Add interaction terms:
# generate the interaction matrix
if (includeSelfinteractions)
{
nWithout = sum(binaryIndicator);
} else {
nWithout = nFeatures;
binaryIndicator = rep(TRUE, nFeatures);
}
nWith = nFeatures - nWithout;
interactionMatrix = .interactionMatrix(nWith, nWithout, maxOrder = maxInteractionOrder,
index.without = which(binaryIndicator),
originalNames = colnames(xBag),
setColNames = TRUE, featureSeparator = interactionSeparatorForCoefNames);
# Identify mandatory interactions. If interactions of mandatory covariates are also mandatory, add all
# interactions where at least one term is mandatory (which will be many, so must be used with
# caution)
if (interactionsMandatory)
{
#mandatoryInteractions = apply( interactionMatrix, 2, function(x) { any(x %in% mandatCovars) } );
inMandat = interactionMatrix %in% mandatCovars;
dim(inMandat) = dim(interactionMatrix);
mandatoryInteractions = colSums(inMandat) > 0;
} else
mandatoryInteractions = mandatCovars;
nMandatoryInteractions = length(mandatoryInteractions);
if (nMandatoryInteractions > nCandidateCovariates)
stop("Number of mandatory interactions is larger than number of candidate covariates.");
nInteractions = ncol(interactionMatrix);
nonMandatInteractions = setdiff( c(1:nInteractions), mandatoryInteractions);
x.int = .generateInteractions(xBag, interactionMatrix = interactionMatrix, setColNames = TRUE);
xTest.int = .generateInteractions(xTestBag, interactionMatrix = interactionMatrix, setColNames = TRUE);
# calculate feature significance
# corOptionsForCandidateCovariates$x = x.int
# corOptionsForCandidateCovariates$y = yBag
absGS = abs(.significance(x.int, yBag, type = type, family = family,
corFncForCandidateCovariates = corFncForCandidateCovariates,
corOptionsForCandidateCovariates = corOptionsForCandidateCovariates));
## nCandidateCovariates could be smaller than indicated due to missing data in x.
nCandidateCovariates = min(nCandidateCovariates, ncol(x.int))
## get indices of candidate cov
rank = rank(-absGS[nonMandatInteractions], ties.method="f")
indx = c(mandatoryInteractions, nonMandatInteractions[rank<=(nCandidateCovariates-nMandatoryInteractions)]);
x.int = x.int[, indx, drop=FALSE]
xTest.int = xTest.int[, indx, drop=FALSE]
absGS = absGS[indx]
# output candidate cov
candidateFeatures = interactionMatrix[, indx, drop = FALSE];
# index of most significant feature, used in initial model.
featureMax = which.max(absGS)
## define initial model and full model for binary and continuous outcome. Mandatory covariates must show
# up in final model, so put them in initial model.
# the data frame modelData will contain the predictors and the response. Note that the apparently unusual
# way of how data.frame handles arguments that are itself matrices comes in handy here.
# In other words, even if yBag is a matrix, it is represented by a single "column" in modelData.
rownames(x.int) = make.names(rownames(x.int), unique = TRUE);
modelData = data.frame(x.int, response = yBag);
names(modelData)[ ncol(modelData) ] = responseName;
predictorNames = colnames(x.int);
# Need to remove large variables from the current environment because a copy of this environment is kept
# in the formula and models below.
rm(xBag, xTestBag, x.int, corOptionsForCandidateCovariates, interactionMatrix);
initialFormula = paste(responseName, "~",
paste(predictorNames[ if (nMandatoryInteractions>0) mandatoryInteractions else featureMax ],
collapse = " + "));
initialModel = .createModel(initialFormula, modelData, weights = weights.Bag, type = type, family = family);
upperFormula = paste(responseName, "~ .")
upperModel = .createModel(upperFormula, modelData, weights = weights.Bag, type = type, family = family);
## forward model selection
model = stepAIC(initialModel,
scope = list(upper = upperModel),
direction="forward",
trace=FALSE)
## output selected feature (by their names) and their coefficients, is there any smarter way to fish out
# which features are selected into model?
coeffs = summary(model)$coefficients;
keepCoeffs = .keepCoeffs(coeffs, type);
haveIntercept = .haveIntercept(coeffs, type)
selected = rownames(coeffs)[keepCoeffs]
featuresInForwardRegression = candidateFeatures[, match(selected, colnames(candidateFeatures)),
drop = FALSE];
# output candidate covariates, taking into account the fact that some features may have been dropped.
dict1 = cbind(0:nFeatures, c(0, which(keepFeatures)))
candidateFeatures = .translate(candidateFeatures, dict1);
featuresInForwardRegression = .translate(featuresInForwardRegression, dict1);
coefOfForwardRegression = coeffs[keepCoeffs,1]
interceptOfForwardRegression = if (haveIntercept) coeffs[1,1] else NA;
## outHat is piHat for binary outcome and yHat for quantitative outcome
outHat = .predictFromModel(model, newdata = as.data.frame(xTest.int), modelType = type)
out = list(predicted = outHat,
retainedFeatures = which(keepFeatures),
candidateFeatures = candidateFeatures,
featuresInForwardRegression = featuresInForwardRegression,
coefOfForwardRegression = coefOfForwardRegression,
interceptOfForwardRegression = interceptOfForwardRegression,
model = if (keepModel) model else NULL )
# The environment of this function is kept in the model returned by stepAIC. Thus, delete everything but
# the output value so the environment doesn't take up too much memory.
varList = ls(all.names = TRUE);
rm(list = setdiff( varList, c("out")));
out;
}
#=====================================================
#
# Handling of multi-threaded calculations
#
#=====================================================
.disableThreads = function(clusterInfo = list())
{
if (!is.null(clusterInfo$cluster))
try( stopCluster(cluster), silent = TRUE);
}
.enableThreads = function(nThreads, verbose)
{
if (is.null(nThreads)) nThreads = max(ceiling(detectCores()*3/4), detectCores()-1);
if (is.na(nThreads)) nThreads = 1;
if (nThreads < 1)
{
warning("In function randomGLM: 'nThreads' is below 1. Will use serial execution.");
nThreads = 1;
}
if (nThreads > 1)
{
if (verbose > 1) .cat.nl("Will use parallel calculation with ", nThreads, " workers.");
if (.Platform$OS.type=="windows")
{
# On Windows: create a cluster manually
# and export the parent evinronment of this function for randomGLM to work as well, plus
# the environment of packages gtools and MASS that are needed.
cluster = makePSOCKcluster(nThreads, outfile = "");
#assign(".randomGLMparallelCluster", cluster, pos = ".GlobalEnv");
clusterExport(cluster, varlist = ls(envir = parent.env(environment()), all.names = TRUE),
envir = parent.env(environment()))
clusterCall(cluster, library, package = "MASS", character.only = TRUE);
clusterCall(cluster, library, package = "gtools", character.only = TRUE);
registerDoParallel(cluster);
out = list(nThreads = nThreads, cluster = cluster);
} else {
# On linux, simply register a parallel backend with nThreads workers
registerDoParallel(nThreads);
out = list(nThreads = nThreads, cluster = NULL);
}
} else {
if (verbose > 1) .cat.nl("Will use serial calculation with a single worker process.");
registerDoSEQ();
out = list(nThreads = nThreads, cluster = NULL);
}
out;
}
#=================================================================================================
#
# main user-level function randomGLM
#
#=================================================================================================
randomGLM = function(
# Input data
x, y, xtest = NULL,
weights = NULL,
# Which columns in x are categorical?
categoricalColumns = NULL,
maxCategoricalLevels = 2,
# Include interactions?
maxInteractionOrder = 1,
includeSelfinteractions = TRUE,
# Prediction type: type can be used to set the prediction type in a simplified way...
type = c("auto", "linear", "binary", "count", "general", "survival"),
# classify is retained mostly for backwards compatibility
classify = switch(type, auto = !is.Surv(y) & (is.factor(y) | length(unique(y)) < 4),
linear = FALSE,
binary = TRUE ,
count = FALSE,
general = FALSE,
survival = FALSE),
# family can be used to fine-tune the underlying regression model
family = switch(type, auto = NULL,
linear = gaussian(link="identity"),
binary = binomial(link=logit),
count = poisson(link = "log"),
general = NULL,
survival = NULL),
# Multi-level classification options - only apply to classification with multi-level response
multiClass.global = TRUE,
multiClass.pairwise = FALSE,
multiClass.minObs = 1,
multiClass.ignoreLevels = NULL,
# Sampling options
nBags = 100,
replace = TRUE,
sampleBaggingWeights = NULL,
nObsInBag = if (replace) nrow(x) else as.integer(0.632 * nrow(x)),
nFeaturesInBag = ceiling(ifelse(ncol(x)<=10, ncol(x),
ifelse(ncol(x)<=300, (1.0276-0.00276*ncol(x))*ncol(x), ncol(x)/5))),
minInBagObs = min( max( nrow(x)/2, 5), 2*nrow(x)/3),
maxBagAttempts = 100*nBags,
replaceBadBagFeatures = TRUE,
# Individual ensemble member predictor options
nCandidateCovariates=50,
corFncForCandidateCovariates= cor,
corOptionsForCandidateCovariates = list(method = "pearson", use="p"),
mandatoryCovariates = NULL,
interactionsMandatory = FALSE,
keepModels = is.null(xtest),
# Miscellaneous options
thresholdClassProb = 0.5,
interactionSeparatorForCoefNames = ".times.",
randomSeed = 12345,
nThreads = NULL,
verbose =0 )
{
# save original data
ySaved = y;
xSaved = x;
type = match.arg(type);
# if y is binary, extract y levels
if (classify)
{
if (! type %in% c("auto", "binary"))
stop("Inconsistent 'type' and 'classify': 'classify' can be TRUE only\n",
" when 'type' is \"auto\" or \"binary\"");
originalYLevels = sort(unique(y));
# If y has more than 2 levels, do classification on binarized variables.
if (length(originalYLevels)>2)
{
if (is.na(multiClass.minObs)) multiClass.minObs = 0;
if (multiClass.minObs < 1)
{
.cat.nl("Warning: invalid input of 'multiClass.nimObs' changed to 1.");
multiClass.minObs = 1;
}
if (length(originalYLevels) > length(y)/multiClass.minObs | length(originalYLevels) == length(y))
{
stop("The response 'y' has too many levels for classification.\n",
" Perhaps you should set 'classify = FALSE' or an appropriate 'type'?");
} else {
.cat.nl("randomGLM: transforming multi-level response to a series of binary variables.");
}
yBin = .binarizeCategoricalVar(as.character(y),
minCount = multiClass.minObs,
val1 = 0, val2 = 1, nameSep = ".vs.", namePrefix = "",
ignore = multiClass.ignoreLevels,
includePairwise = multiClass.pairwise,
includeLevelVsAll = multiClass.global,
levelOrder = NULL);
nY = ncol(yBin);
yBinNames = colnames(yBin);
yBinLevels = attr(yBin, "includedLevels");
# Apply randomGLM recursively to each column of yBin.
out = list(binaryPredictors = list());
for (iy in 1:nY)
{
if (verbose > 0)
.cat.nl("..Working on binary variable ", yBinNames[iy], " (", iy, " of ", nY, ")");
out$binaryPredictors[[iy]] = randomGLM(x = x, y = yBin[, iy], xtest = xtest,
weights = weights,
categoricalColumns = categoricalColumns,
maxCategoricalLevels = maxCategoricalLevels,
maxInteractionOrder = maxInteractionOrder,
includeSelfinteractions = includeSelfinteractions,
type = type,
classify = classify,
family = family,
nBags = nBags,
replace = replace,
sampleBaggingWeights = sampleBaggingWeights,
nObsInBag = nObsInBag,
nFeaturesInBag = nFeaturesInBag,
minInBagObs = minInBagObs,
maxBagAttempts = maxBagAttempts,
replaceBadBagFeatures = replaceBadBagFeatures,
nCandidateCovariates = nCandidateCovariates,
corFncForCandidateCovariates = corFncForCandidateCovariates,
corOptionsForCandidateCovariates = corOptionsForCandidateCovariates,
mandatoryCovariates = mandatoryCovariates,
interactionsMandatory = interactionsMandatory,
keepModels = keepModels,
thresholdClassProb = thresholdClassProb,
interactionSeparatorForCoefNames = interactionSeparatorForCoefNames,
randomSeed = randomSeed,
nThreads = nThreads,
verbose = verbose - 1);
}
names(out$binaryPredictors) = yBinNames;
out$predictedOOB = as.matrix(sapply(out$binaryPredictors, getElement, "predictedOOB"));
colnames(out$predictedOOB) = .spaste("PredictionFor.", yBinNames);
out$predictedOOB.response = do.call(cbind,
lapply(out$binaryPredictors, getElement, "predictedOOB.response"));
responseNames = .spaste(rep(yBinNames, rep(2, nY)), ".ProbabilityOfClass.", as.vector(yBinLevels));
colnames(out$predictedOOB.response) = responseNames;
rownames(out$predictedOOB.response) = rownames(out$predictedOOB) = rownames(x);
if (!is.null(xtest))
{
out$predictedTest = sapply(out$binaryPredictors, getElement, "predictedTest");
colnames(out$predictedTest) = yBinNames;
out$predictedTest.response = do.call(cbind,
lapply(out$binaryPredictors, getElement, "predictedTest.response"));
colnames(out$predictedOOB.response) = responseNames;
rownames(out$predictedTest) = rownames(out$predictedTest.response) = rownames(xtest);
}
out$levelMatrix = yBinLevels;
out$thresholdClassProb = thresholdClassProb;
class(out) = c("randomGLM", class(out));
return(out);
}
y = as.numeric(as.factor(y))-1;
# The next 3 lines are not needed since the results are always c(0, 1), 0, and 1.
numYLevels = sort(unique(y));
minY = min(y, na.rm = TRUE);
maxY = max(y, na.rm = TRUE);
}
# If type is "auto", guess the actual type. The value "auto" is invalid in internal code.
if (type=="auto")
{
if (is.Surv(y))
{
type = "survival"
} else if (classify) {
type = "binary"
} else if (all(.is.wholenumber(y))) {
type = "count"
} else type = "linear"
# The default family for type="auto" is NULL; get the appropriate family here now.
if (is.null(family))
family = switch(type, linear = gaussian(link="identity"),
binary = binomial(link=logit),
count = poisson(link = "log"),
survival = NULL);
if (verbose > 2) .cat.nl("Determined type ", type);
} else {
if (classify && type!="binary")
stop("Inconsistent input: when 'classify' is TRUE, 'type' must be 'binary' or 'auto'.");
}
if (type!="survival" && is.null(family))
stop("'family' could not be set automatically (most likely because the input 'type' is 'general').\n",
" Please set an appropriate 'family' or use a 'type' that automatically selects
an appropriate 'family'.");
# Check that the response y is numeric, unless type is 'survival'
responseTypeOK = switch(type, linear = is.numeric(y),
binary = is.numeric(y),
count = is.numeric(y) && all(.is.wholenumber(y)),
general = is.numeric(y),
survival = is.Surv(y));
if (!responseTypeOK)
stop(.spaste("The response 'y' is of incorrect type. For 'type' \"", type, "\", the response\n",
"must be ", switch(type, linear = "numeric",
binary = "vector with 2 values",
count = "numeric with integer values",
general = "numeric",
survival = "a Survival object"), "."));
corFncForCandidateCovariates = match.fun(corFncForCandidateCovariates);
featureNames.original = colnames(x);
if (is.null(dim(x)))
{
x = data.frame(x = x);
} else {
x = as.data.frame(x);
}
#keepCols = sapply(x, function(.x) !all(.x==.x[1]));
#if (!all(keepCols))
#x = x[, keepCols];
#featureNames.original = featureNames.original[keepCols];
# PL: Why this line? Because this drops all col- and row-names?
# Edit: it also converts factors to numbers, so it makes more sense than as.matrix(x)
# x = matrix(as.numeric(x), nrow(x), ncol(x))
nFeatures.original = ncol(x);
if (is.null(featureNames.original))
{
featureNames.original = featureNames = .spaste("F", .prependZeros(c(1:nFeatures.original)));
colnames(x) = featureNames.original;
namesChanged = FALSE;
nameTranslationTable = data.frame(Column = c(1:nFeatures.original),
OriginalName = rep(NA, nFeatures.original),
CoefficientName = featureNames);
} else {
featureNames = make.names(featureNames.original, unique = TRUE);
if (isTRUE(all.equal(featureNames, featureNames.original)))
{
namesChanged = FALSE;
nameTranslationTable = data.frame(Column = c(1:nFeatures.original),
OriginalName = featureNames,
CoefficientName = featureNames);
} else {
namesChanged = TRUE;
nameTranslationTable = data.frame(Column = c(1:nFeatures.original), OriginalName = featureNames.original,
CoefficientName = featureNames);
colnames(x) = featureNames;
}
}
doTest = !is.null(xtest);
if (doTest)
{
xtestSaved = xtest;
if (is.null(dim(xtest)))
{
xtest = data.frame(x = xtest);
} else
xtest = as.data.frame(xtest);
if (ncol(x)!=ncol(xtest))
stop("Number of learning and testing predictors (columns of x, xtest) must equal.");
if (!is.null(colnames(xtestSaved)))
{
if (!isTRUE(all.equal(colnames(xtestSaved), featureNames.original)))
stop("Column names of 'x' and 'xtest' disagree.");
}
colnames(xtest) = colnames(x)
nTestSamples = nrow(xtest);
# matrix for test set predicted values across bags
predictedTestMat = matrix(NA, nTestSamples, nBags);
}
# Handling of factors and other categorical features.
# if categoricalColumns is not logical, turn it into logical indicator.
if (!is.logical(categoricalColumns))
categoricalColumns = c(1:nFeatures.original) %in% categoricalColumns;
# Add columns deemed categorical to the indicator
isCategorical.all = categoricalColumns | .categoricalColumns(x, maxLevels = maxCategoricalLevels);
isFactor.original = sapply(x, is.factor);
if (sum(isCategorical.all) > 0)
{
xLevels = lapply(x[isCategorical.all], .nonMissingLevels);
# If test data were suplied, check whether the factor positions and levels agree between training and
# test data
# Binarize the factors and adjust mandatory covariates, feature names, number of features etc.
x = .binarizeCategoricalColumns(x, isCategorical.all, xLevels);
bin2original = attr(x, "indexOfOrigin");
if (!is.null(mandatoryCovariates))
{
mandatoryCovariates.bin = which(bin2original %in% mandatoryCovariates);
} else
mandatoryCovariates.bin = NULL;
featureNames.bin = colnames(x)
nFeatures.bin = ncol(x);
isCategorical.bin = attr(x, "isCategorical");
namesChanged = TRUE;
nameTranslationTable = cbind(nameTranslationTable[bin2original, ],
BinarizedCoefficientName = featureNames.bin);
if (doTest)
{
isCategorical.all.test = categoricalColumns |
.categoricalColumns(xtest, maxLevels = maxCategoricalLevels);
if (any(isCategorical.all & !isCategorical.all.test))
stop("All columns that are categorical in training data must also be categorical in test data.");
isFactor.test = sapply(xtest, is.factor);
if (!isTRUE(all.equal(isFactor.original, isFactor.test)))
stop("Factor variables in training data 'x' must\n",
"also be factor variables in test data 'xtest' and vice-versa.")
levels.test = lapply(xtest[isCategorical.all], .nonMissingLevels);
consistent = mapply(function(x1, x2) {all(x2 %in% x1)}, xLevels, levels.test);
if (!all(consistent))
{
stop(.spaste("The following categorical variables have test levels that",
" do not appear in training data:\n",
paste(colnames(x)[isCategorical.all][!consistent], collapse = ", ")));
}
xtest = .binarizeCategoricalColumns(xtest, isCategorical.all, xLevels)
}
} else {
isCategorical.bin = rep(FALSE, nFeatures.original);
nFeatures.bin = nFeatures.original
featureNames.bin = featureNames.original;
mandatoryCovariates.bin = mandatoryCovariates;
xLevels = NULL;
}
nFeatures.eff = nFeatures.bin;
featureNames.eff = featureNames.bin;
isCategorical.eff = isCategorical.bin
mandatoryCovariates.eff = mandatoryCovariates.bin;
# Choose a response name that does not conflict with any of the column names in x.
responseName = make.unique(c(featureNames.eff, "yResponse"))[nFeatures.eff + 1];
# Important: turn the response into a matrix. This allows me to use one code for simple responses as well
# as for survival (where the response is a matrix with 2 columns).
if (type!="survival") y = as.matrix(y);
if (nrow(y) != nrow(x))
stop("x and y must have the same number of observations.")
nSamples = nrow(y);
if (!is.null(weights) && length(weights)!=nSamples)
stop("If 'weights' are given, they must have the same length (number of samples) as 'y' and 'x'.");
if (nSamples < 8)
{
.cat.nl("*****************************************************************\n",
"* Warning in randomGLM: there are 7 or fewer observations.\n",
"* This may be too few to perform meaningful model selection\n",
"* on in-bag (i.e., even fewer) samples.\n",
"* Model selection algorithm will likely output additional warnings.\n",
"* The resulting predictor should be used with caution.\n",
"*****************************************************************");
}
nonMandatCovars.eff = setdiff( c(1:nFeatures.eff), mandatoryCovariates.eff);
nMandatoryCovariates.eff = length(mandatoryCovariates.eff);
# nFeaturesInBag shouldn't be greater than total number of features.
if (nFeatures.eff<nFeaturesInBag)
{
nFeaturesInBag = ncol(x)
.cat.nl("Warning in randomGLM: nFeaturesInBag is larger than the effective number of features.\n",
" Will use nFeaturesInBag equal to the number of features.");
}
# nCandidateCovariates shouldn't be greater than nFeaturesInBag
if (nCandidateCovariates>nFeaturesInBag)
{
.cat.nl("Warning in randomGLM: nCandidateCovariates is larger than nFeaturesInBag.\n",
" Will use nCandidateCovariates=nFeaturesInBag");
nCandidateCovariates = nFeaturesInBag;
}
mandatoryCovarsGiven = length(mandatoryCovariates.eff)>0
if (mandatoryCovarsGiven & nCandidateCovariates <= nMandatoryCovariates.eff)
{
stop("Error: number of mandatoryCovariates >= nCandidateCovariates")
}
if (thresholdClassProb<0 | thresholdClassProb>1)
stop("'thresholdClassProb' must be between 0 and 1.")
# Check that the given family makes sense.
if (type!="survival")
{
if (inherits(family, "character")) family = match.fun(family) ();
if (!inherits(family, "family"))
stop("Argument 'family' must be a valid 'family' object (see help(family))\n",
" or a character string specifying a valid family.");
}
# set seed
if (!is.null(randomSeed))
{
if (exists(".Random.seed"))
{
saved.seed = .Random.seed;
on.exit(.Random.seed <<- saved.seed);
}
set.seed(randomSeed);
}
# matrix for predicted values in the training set
#predictedMat = matrix(NA, nSamples, nBags);
# matrix for other outputs
#featuresInForwardRegression = candidateFeatures = coefOfForwardRegression = list();
#interceptOfForwardRegression = rep(NA, nBags)
#bagObsIndx = matrix(NA, nBags, nObsInBag)
#models = list();
if (is.null(nThreads) || (nThreads > 1)) clusterInfo = .enableThreads(nThreads, verbose)
else clusterInfo = list(nThreads = nThreads);
on.exit(.disableThreads(clusterInfo), add = TRUE)
nThreads = clusterInfo$nThreads
combinePredictors = function(...)
{
preds = list(...);
out = list();
out$predictedMat = sapply(preds, getElement, "predicted");
if (doTest)
{
out$predictedTestMat = sapply(preds, getElement, "predictedTest");
#print(dim(out$predictedTestMat));
# If the test set consists of 1 sample, this will be a vector that needs to be turned into a
# single-row matrix
if (is.null(dim(out$predictedTestMat)))
{
if (length(preds) > 1)
{
out$predictedTestMat = t(as.matrix(out$predictedTestMat));
} else
out$predictedTestMat = as.matrix(out$predictedTestMat);
}
}
out$candidateFeatures = lapply(preds, getElement, "candidateFeatures");
out$featuresInForwardRegression = lapply(preds, getElement, "featuresInForwardRegression");
out$coefOfForwardRegression = lapply(preds, getElement, "coefOfForwardRegression");
out$interceptOfForwardRegression = sapply(preds, getElement, "interceptOfForwardRegression");
out$models = lapply(preds, getElement, "model");
out;
}
# Prepare out of bag samples and in-bag features. This obviates the problems associated with splitting
# random number generation across worker processes.
# Since categorical predictors are binarized, they don't need any special attention - if they don't vary,
# they will be removed from the bag later.
bagFeatures = matrix(NA, nFeaturesInBag, nBags);
bagObsIndx = matrix(NA, nObsInBag, nBags);
nBagAttempts = 0;
for (bag in 1:nBags)
{
yBagVar = 0;
while (yBagVar==0)
{
nBagAttempts = nBagAttempts + 1;
if (nBagAttempts > maxBagAttempts)
stop("Bagging step failed. This could mean that factor variables have\n",
"too many levels with too few samples at each level, or\n",
"the response is (nearly) constant.");
# sample indices for each bag
bagSamples = sample(nSamples, nObsInBag, replace = replace, prob=sampleBaggingWeights);
yBag = y[bagSamples, , drop = FALSE];
yBagVar = var(yBag[, 1], na.rm=TRUE)
# If there are no out-of-bag samples, force re-sampling as well
# If the number of in-bag samples is less minInBagObs, re-sample again
nUniqueInBag = length(unique(bagSamples));
if (nUniqueInBag==nSamples | nUniqueInBag < minInBagObs) yBagVar = 0
if (yBagVar == 0) next;
if (replaceBadBagFeatures)
{
goodIndex = .goodFeatures( x[bagSamples, ], returnIndex = FALSE);
mandatoryCovariates.bag = mandatoryCovariates.eff[goodIndex];
nMandatoryCovariates.bag = length(mandatoryCovariates.bag);
} else {
mandatoryCovariates.bag = mandatoryCovariates.eff
nMandatoryCovariates.bag = nMandatoryCovariates.eff
goodIndex = c(1:nFeatures.eff);
}
featurePool = nonMandatCovars.eff[goodIndex];
# If no features are "good", try bagging again.
if (length(featurePool) == 0) { yBagVar = 0; next;}
# If there aren't enough features to fill the bag completely, issue a warning.
if (length(featurePool) < nFeaturesInBag - nMandatoryCovariates.bag)
warning(.spaste("Bagging bag ", bag, ": number of valid bag features is not sufficient \n",
" for sampling. This may impact the performance of the predictor."));
bagFeatures.1 = c(mandatoryCovariates.bag,
sample(featurePool, min(length(featurePool), nFeaturesInBag - nMandatoryCovariates.bag)))
}
bagObsIndx[, bag] = bagSamples;
bagFeatures[1:length(bagFeatures.1), bag] = bagFeatures.1;
}
# For convenience: the iteration over each bag is put in a macro-like function
singleBagIteration = function(bag, verbose)
{
if (verbose>0) {.cat.nl("..bag ", bag)}
#mem.last = NA;
#if (verbose > 5) {m = gc()[2,2]; .cat.nl(" Step 1: ", m, ", diff: ", m - mem.last); mem.last = m}
out = list();
bagSamples = bagObsIndx[, bag];
# keep track of in bag and oob samples
oob = c(1:nSamples)[-unique(bagSamples)];
nOOB = length(oob);
features = bagFeatures[, bag]
features = features[is.finite(features)];
nFeatures.bag = length(features);
xBag = x[bagSamples, features, drop = FALSE];
yBag = y[bagSamples, , drop = FALSE];
isCategorical.bag = isCategorical.eff[ features ];
if (doTest)
{
xTestBag = rbind(x[oob, features, drop = FALSE], xtest[, features, drop = FALSE]);
} else {
xTestBag = x[oob, features, drop = FALSE];
}
# Here I only need to pass the number of mandatory covariates to function forwardSelection, because
# they're saved at the beginning of features.
pr = .forwardSelection(xBag, yBag, xTestBag,
weights.Bag = if (is.null(weights)) NULL else weights[ bagSamples],
classify=classify,
binaryIndicator = isCategorical.bag,
maxInteractionOrder = maxInteractionOrder,
includeSelfinteractions = includeSelfinteractions,
nCandidateCovariates = nCandidateCovariates,
corFncForCandidateCovariates = corFncForCandidateCovariates,
corOptionsForCandidateCovariates = corOptionsForCandidateCovariates,
NmandatoryCovariates = nMandatoryCovariates.eff,
interactionsMandatory = interactionsMandatory,
keepModel = keepModels,
interactionSeparatorForCoefNames = interactionSeparatorForCoefNames,
type = type,
family = family,
responseName = responseName);
#if (verbose > 5) {m = gc()[2,2]; .cat.nl(" Step 3: ", m, ", diff: ", m - mem.last); mem.last = m}
# get output
out$predicted = rep(NA, nSamples);
out$predicted[oob] = pr$predicted[1:nOOB];
if (doTest) {
out$predictedTest = pr$predicted[(nOOB+1):(nOOB + nTestSamples)];
}
# to extract selected feature indices from feature name "feature?", use substring
dictionary = rbind(c(0,0), cbind(1:nFeatures.bag, features));
out$candidateFeatures = .translate(pr$candidateFeatures, dictionary);
out$featuresInForwardRegression = .translate(pr$featuresInForwardRegression, dictionary);
out$coefOfForwardRegression = pr$coefOfForwardRegression;
out$interceptOfForwardRegression = pr$interceptOfForwardRegression
if (keepModels) out$model = pr$model;
# For large problems: this may be necessary to prevent exhausting the entire memory of the system.
rm(xBag, pr, xTestBag, features, bagSamples, oob, yBag);
#if (verbose > 5) {m = gc()[2,2]; .cat.nl(" Step 4: ", m, ", diff: ", m - mem.last); mem.last = m}
# Result value for each iteration.
out
}
# loop over bags. Try two different version of the same code, one for parallel and one for serial
# execution.
if (nThreads > 1)
{
ensemble = foreach (bag = 1:nBags, .combine = combinePredictors, .multicombine = TRUE,
.maxcombine = nBags) %dopar%
singleBagIteration(bag, verbose = verbose)
} else {
bagRes = list();
for (bag in 1:nBags)
{
bagRes[[bag]] = singleBagIteration(bag, verbose = verbose);
#if (verbose > 5) {tmp = gc(); .cat.nl(" In main loop: ", tmp[2,2]);}
#.cat.nl("Size of information for each bag:");
#print(object.size(bagRes[[bag]]), units = "auto");
}
ensemble = do.call(combinePredictors, bagRes);
}
featuresInForwardRegression.all = do.call(cbind, ensemble$featuresInForwardRegression);
timesSelectedByForwardRegression = .countsInInteractionMatrix(featuresInForwardRegression.all, nFeatures.eff)
colnames(bagObsIndx) = names(ensemble$candidateFeatures) =
names(ensemble$featuresInForwardRegression) = names(ensemble$coefOfForwardRegression) =
names(ensemble$interceptOfForwardRegression) = .spaste("Bag",1:nBags)
if (ncol(x)==ncol(xSaved) && !is.null(colnames(xSaved)))
colnames(timesSelectedByForwardRegression) = colnames(xSaved);
# average predictive prob over bags, but if all bags give NA, the average should also give NA.
predictedOOB.response1 = rowMeans(ensemble$predictedMat, na.rm = TRUE);
predictedOOB.response1[rowSums(!is.na(ensemble$predictedMat))== 0] = NA;
# recover original sample names
if (!is.null(rownames(xSaved))) {
names(predictedOOB.response1) = rownames(xSaved)
}
# prepare basic output
out = list(predictedOOB.response = predictedOOB.response1,
predictedOOB = predictedOOB.response1,
candidateFeatures= ensemble$candidateFeatures,
featuresInForwardRegression = ensemble$featuresInForwardRegression,
coefOfForwardRegression = ensemble$coefOfForwardRegression,
interceptOfForwardRegression = ensemble$interceptOfForwardRegression,
bagObsIndx = bagObsIndx,
timesSelectedByForwardRegression = timesSelectedByForwardRegression,
models = if (keepModels) ensemble$models else NULL,
featureNamesChanged = namesChanged,
nameTranslationTable = nameTranslationTable,
responseName = responseName,
details = list(
type = type,
classify = classify,
family = family,
nFeatures.original = nFeatures.original,
nFeatures.bin = nFeatures.bin,
nFeatures.eff = nFeatures.eff,
maxInteractionOrder = maxInteractionOrder,
yLevels = if (classify) originalYLevels else NULL,
maxCategoricalLevels = maxCategoricalLevels,
xLevels = xLevels,
categoricalColumns = categoricalColumns,
isCategorical.all = isCategorical.all,
isCategorical.bin = isCategorical.bin,
isCategorical.eff = isCategorical.eff,
mandatoryCovariates.bin = mandatoryCovariates.bin,
mandatoryCovariates.eff = mandatoryCovariates.eff,
isFactor.original = isFactor.original,
x.original = xSaved,
y.original = ySaved,
x = x,
y = y,
weights = weights,
thresholdClassProb = thresholdClassProb))
# add test set output
if (doTest) {
predictedTest.response1 = rowMeans(ensemble$predictedTestMat, na.rm = TRUE);
predictedTest.response1[rowSums(!is.na(ensemble$predictedTestMat))== 0] = NA;
if (!is.null(rownames(xtestSaved))) {
names(predictedTest.response1) = rownames(xtestSaved)
}
out$predictedTest.response = predictedTest.response1
out$predictedTest = predictedTest.response1
}
# add output for binary outcomes
if (classify)
{
predictedOOB = ifelse(predictedOOB.response1>thresholdClassProb, 1, 0)
predictedOOB = originalYLevels[predictedOOB+1]
predictedOOB.response = cbind(1-predictedOOB.response1, predictedOOB.response1)
colnames(predictedOOB.response) = as.character(originalYLevels)
out$predictedOOB = predictedOOB
out$predictedOOB.response = predictedOOB.response
if (doTest) {
predictedTest = ifelse(predictedTest.response1>thresholdClassProb, 1, 0)
predictedTest = originalYLevels[predictedTest+1]
predictedTest.response = cbind(1-predictedTest.response1, predictedTest.response1)
colnames(predictedTest.response) = as.character(originalYLevels)
out$predictedTest.response = predictedTest.response;
out$predictedTest = predictedTest;
}
}
class(out) = c("randomGLM", class(out));
out
}
#============================================================================
#
# predict.randomGLM
#
#============================================================================
# Internal prediction function. This function will also be called from thin.randomGLM to generate prediction
# from the thinned predictor.
.predict.internal = function(object, newdata, type, thresholdClassProb,
returnBothTypes = FALSE)
{
if (!is.null(newdata))
{
# Check that the structure of newdata is compatible with object.
isFactor.new = sapply(as.data.frame(newdata), is.factor);
if (!isTRUE(all.equal(as.vector(isFactor.new), as.vector(object$details$isFactor.original))))
stop("is.factor on 'newdata' does not agree with factor indicator in original 'object'. \n",
" Features that were factors in the training data must\n",
" also be factors in test data and vice-versa.");
# Check that names agree. It is not necessary to change the names since
# names on newdata bags are set from the interaction matrix.
if (!is.null(colnames(newdata)) &&
(!all.equal(colnames(newdata), colnames(object$details$x.original))))
stop("Column names of 'newdata' differ from column names of training data.\n",
" Hint: If 'newdata' has column names, they must be the same\n",
" as the column names of the training data. \n",
" Mismatched column names often indicate mismatched variables which will\n",
" lead to wrong predictions or hard-to-understand errors.");
if (any(object$details$isCategorical.all))
{
# Check that all levels of categorical variables present in newdata
# were also present in the training data.
levels.new = lapply(newdata[object$details$isCategorical.all], .nonMissingLevels);
consistent = mapply(function(x1, x2) {all(x2 %in% x1)}, object$details$xLevels, levels.new);
if (!all(consistent))
{
stop(.spaste("The following categorical variables have test levels that",
" do not appear in training data:\n",
paste(colnames(object$details$x.original)[object$details$isCategorical.all][!consistent],
collapse = ", ")));
}
# Binarize categorical columns of 'newdata'.
newdata = .binarizeCategoricalColumns(newdata, object$details$isCategorical.all,
object$details$xLevels);
}
nSamples = nrow(newdata)
newdata.1 = cbind(newdata, rep(1, nSamples))
# colnames(newdata) = make.names(colnames(newdata), unique = TRUE);
} else {
nSamples = nrow(object$details$y);
x.1 = cbind(object$details$x, rep(1, nSamples));
}
nBags = length(object$models)
predictedMat = matrix(NA, nSamples, nBags)
for (b in 1:nBags) if (inherits(object$models[[b]], "lm"))
{
bagIM = object$featuresInForwardRegression[[b]];
if (!is.null(newdata))
{
bagNewData = .generateInteractions(x = newdata, x1 = newdata.1, interactionMatrix = bagIM,
setColNames = TRUE)
predictedMat[, b] = .predictFromModel(object$models[[b]], newdata = as.data.frame(bagNewData),
modelType = object$details$type);
} else {
oob = c(1:nSamples)[-unique(object$bagObsIndx[, b])];
bagNewData = .generateInteractions(x = object$details$x[oob, ], x1 = x.1[oob, ], interactionMatrix = bagIM,
setColNames = TRUE)
predictedMat[oob, b] = .predictFromModel(object$models[[b]], newdata = as.data.frame(bagNewData),
modelType = object$details$type);
}
}
predicted.response = rowMeans(predictedMat, na.rm = TRUE)
predicted.response[rowSums(!is.na(predictedMat))== 0] = NA
names(predicted.response) = if (is.null(newdata)) {
if (is.null(rownames(object$details$y.original))) rownames(object$details$x.original) else
rownames(object$details$y.original)
} else rownames(newdata)
if (type=="response" | returnBothTypes)
{
if (object$details$classify)
{
out.response = cbind(1-predicted.response, predicted.response)
colnames(out.response) = as.character(object$details$yLevels)
}else {
out.response = predicted.response
}
}
if (type=="class" | returnBothTypes)
{
# Note: type == "class" only makes sense for classification.
# For continuous prediction, put the continuous prediction here as well.
if (object$details$classify)
{
predicted.round = ifelse(predicted.response>thresholdClassProb, 1, 0)
out.class = object$details$yLevels[predicted.round+1]
} else
out.class = predicted.response;
}
if (returnBothTypes)
{
return(list(response = out.response, class = out.class));
} else if (type=="class")
return(out.class);
out.response;
}
#===============================================================================================
#
# user-level predict() function
#
#===============================================================================================
predict.randomGLM = function(object, newdata, type=c("response", "class"),
thresholdClassProb = object$details$thresholdClassProb, ...)
{
type = match.arg(type)
if (!is.null(object$binaryPredictors))
{
predictions = do.call(cbind, lapply(object$binaryPredictors, predict.randomGLM,
newdata = newdata, type = type, thresholdClassProb = thresholdClassProb, ...))
if (type=="response")
{
colnames(predictions) = colnames(object$predictedOOB.response);
} else
colnames(predictions) = colnames(object$predictedOOB);
return(predictions);
}
if (is.null(object$models))
stop("The 'object' object must contain the undelying models for prediction.\n",
" Please re-run the randomGLM function with argument 'keepModels = TRUE' and try again.");
# If new data is not given, return already calculated prediction. We would need the out-of-bag data for a
# re-prediction and we don't have them.
if (missing(newdata))
{
stop("valid 'newdata' must be given.")
}
if (ncol(newdata)!=object$details$nFeatures.original)
stop("Number of columns in 'newdata' differs from the number of features\n",
" in the original training data.");
if (type=="class" & !object$details$classify)
stop("type='class' is only valid in classification.")
if (thresholdClassProb<0 | thresholdClassProb>1)
stop("Error: thresholdClassProb takes values between 0 and 1.")
# Call the internal prediction function and return its result.
.predict.internal(object = object, newdata = newdata, type = type,
thresholdClassProb = thresholdClassProb, returnBothTypes = FALSE);
}
#============================================================================
#
# thin.randomGLM
#
#============================================================================
thinRandomGLM = function(rGLM, threshold)
{
# Check if rGLM corresponds to multi-level repsonse.
if (!is.null(rGLM$binaryPredictors))
{
out = rGLM;
out$binaryPredictors = lapply(rGLM$binaryPredictors, thinRandomGLM,
threshold = threshold);
# Create the main prediction
yBinNames = names(rGLM$binaryPredictors);
yBinLevels = rGLM$levelMatrix
nY = length(rGLM$binaryPredictors);
names(out$binaryPredictors) = yBinNames;
out$predictedOOB = as.matrix(sapply(out$binaryPredictors, getElement, "predictedOOB"));
colnames(out$predictedOOB) = .spaste("PredictionFor.", yBinNames);
out$predictedOOB.response = do.call(cbind,
lapply(out$binaryPredictors, getElement, "predictedOOB.response"));
responseNames = .spaste(rep(yBinNames, rep(2, nY)), ".ProbabilityOfClass.", as.vector(yBinLevels));
colnames(out$predictedOOB.response) = responseNames;
rownames(out$predictedOOB.response) = rownames(out$predictedOOB) = rownames(rGLM$details$x.original);
return(out);
}
nBags = length(rGLM$featuresInForwardRegression)
if (nBags != length(rGLM$models))
if (threshold<0)
stop("'threshold' must be positive.")
x = rGLM$details$x
y = rGLM$details$y
times = rGLM$timesSelectedByForwardRegression[1, ];
if (threshold >= max(times))
stop("Specified threshold removes all features in predictor.")
## so far, threshold only applies to no interaction level.
keepF = which(times > threshold)
screenF = function(input, keepF) { all(is.element(input, keepF)) }
keepS = rGLM$bagObsIndx
models = featuresInForwardRegression = coefOfForwardRegression = list();
interceptOfForwardRegression = rep(NA, nBags);
for (b in 1:nBags)
{
yBag = y[ keepS[,b], , drop = FALSE]
xBag = x[ keepS[,b], , drop = FALSE]
if (is.null(rGLM$details$weights))
{
wBag = NULL
} else
wBag = rGLM$details$weights[keepS[, b]];
bagIM = rGLM$featuresInForwardRegression[[b]]
keepIM = apply(bagIM, 2, screenF, keepF)
if (sum(keepIM)==0)
{
featuresInForwardRegression[[b]] = models[[b]] = coefOfForwardRegression[[b]] = NA;
} else {
bagIM = bagIM[, keepIM, drop=FALSE]
featuresInForwardRegression[[b]] = bagIM
xBag.int = .generateInteractions(x = xBag, interactionMatrix = bagIM, setColNames = TRUE)
modelData = cbind(data.frame(xBag.int), data.frame(yBag = yBag))
colnames(modelData)[ncol(modelData)] = rGLM$responseName;
models[[b]] = .createModel( formula = paste(rGLM$responseName, "~ ."),
modelData = modelData,
weights = wBag,
type = rGLM$details$type,
family = rGLM$details$family);
coeffs = summary(models[[b]])$coefficients;
keepCoeffs = .keepCoeffs(coeffs, rGLM$details$type);
haveIntercept = .haveIntercept(coeffs, rGLM$details$type)
coefOfForwardRegression[[b]] = coeffs[keepCoeffs,1]
interceptOfForwardRegression[b] = if (haveIntercept) coeffs[1,1] else NA;
}
}
featuresInForwardRegression.all = do.call(cbind, featuresInForwardRegression)
timesSelectedByForwardRegression = .countsInInteractionMatrix(featuresInForwardRegression.all,
rGLM$details$nFeatures.eff)
if (!is.null(colnames(x))) {
colnames(timesSelectedByForwardRegression) = colnames(x)
}
names(models) = names(featuresInForwardRegression) = names(coefOfForwardRegression) = .spaste("Bag",1:nBags)
# Copy most of the information from the original rGLM since that information is left intact.
out = rGLM;
out$models = models;
out$featuresInForwardRegression = featuresInForwardRegression;
out$timesSelectedByForwardRegression = timesSelectedByForwardRegression;
out$coefOfForwardRegression = coefOfForwardRegression;
out$interceptOfForwardRegression = interceptOfForwardRegression;
# Get predictions from the new models, both response and class.
prediction = .predict.internal(out, newdata = NULL, type = "response",
thresholdClassProb = rGLM$details$thresholdClassProb,
returnBothTypes = TRUE);
# Change the elements that need to be changed.
out$predictedOOB.response = prediction$response;
out$predictedOOB = prediction$class;
if (!inherits(out, "randomGLM")) class(out) = c("randomGLM", class(out))
out
}
|