File: predictions.R

package info (click to toggle)
r-cran-ranger 0.17.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,160 kB
  • sloc: cpp: 8,324; sh: 13; makefile: 5; ansic: 2
file content (111 lines) | stat: -rw-r--r-- 3,540 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# -------------------------------------------------------------------------------
#   This file is part of Ranger.
#
# Ranger is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Ranger is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Ranger. If not, see <http://www.gnu.org/licenses/>.
#
# Written by:
#
#   Marvin N. Wright
# Institut fuer Medizinische Biometrie und Statistik
# Universitaet zu Luebeck
# Ratzeburger Allee 160
# 23562 Luebeck
# Germany
#
# http://www.imbs-luebeck.de
# -------------------------------------------------------------------------------

##' @export
predictions <- function(x, ...)  UseMethod("predictions")

##' Extract predictions of Ranger prediction object.
##'
##'
##' @title Ranger predictions
##' @param x Ranger prediction object.
##' @param ... Further arguments passed to or from other methods.
##' @return Predictions: Classes for Classification forests, Numerical values for Regressions forests and the estimated survival functions for all individuals for Survival forests.
##' @seealso \code{\link{ranger}}
##' @author Marvin N. Wright
##' @aliases predictions
##' @export
predictions.ranger.prediction <- function(x, ...) {
  if (!inherits(x, "ranger.prediction")) {
    stop("Object ist no ranger.prediction object.")
  }
  if (x$treetype == "Classification" || x$treetype == "Regression" || x$treetype == "Probability estimation") {
    if (is.null(x$predictions)) {
      stop("No predictions found.")
    } else {
      return(x$predictions)
    }
  } else if (x$treetype == "Survival") {
    if (is.null(x$survival)) {
      stop("No predictions found.")
    } else {
      return(x$survival)
    }
  } else {
    stop("Unknown tree type.")
  }
}

##' Extract training data predictions of Ranger object.
##'
##'
##' @title Ranger predictions
##' @param x Ranger object.
##' @param ... Further arguments passed to or from other methods.
##' @return Predictions: Classes for Classification forests, Numerical values for Regressions forests and the estimated survival functions for all individuals for Survival forests.
##' @seealso \code{\link{ranger}}
##' @author Marvin N. Wright
##' @export
predictions.ranger <- function(x, ...) {
  if (!inherits(x, "ranger")) {
    stop("Object ist no ranger object.")
  }
  if (x$treetype == "Classification" || x$treetype == "Regression" || x$treetype == "Probability estimation") {
    if (is.null(x$predictions)) {
      stop("No predictions found.")
    } else {
      return(x$predictions)
    }
  } else if (x$treetype == "Survival") {
    if (is.null(x$survival)) {
      stop("No predictions found.")
    } else {
      return(x$survival)
    }
  } else {
    stop("Unknown tree type.")
  }
}

##' @export
as.data.frame.ranger.prediction <- function(x, ...) {
  if (x$treetype == "Survival") {
    df <- data.frame(x$survival)
    colnames(df) <- paste0("time=", x$unique.death.times)
  } else if (x$treetype == "Probability estimation") {
    df <- data.frame(x$predictions)
  } else {
    df <- data.frame(prediction = x$predictions)
  }
  
  if (!is.null(x$se)) {
    df$se <- x$se
  }
  
  df
}