File: hshrink.Rd

package info (click to toggle)
r-cran-ranger 0.17.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,160 kB
  • sloc: cpp: 8,324; sh: 13; makefile: 5; ansic: 2
file content (34 lines) | stat: -rw-r--r-- 1,056 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/hshrink.R
\name{hshrink}
\alias{hshrink}
\title{Hierarchical shrinkage}
\usage{
hshrink(rf, lambda)
}
\arguments{
\item{rf}{ranger object, created with \code{node.stats = TRUE}.}

\item{lambda}{Non-negative shrinkage parameter.}
}
\value{
The ranger object is modified in-place.
}
\description{
Apply hierarchical shrinkage to a ranger object. 
Hierarchical shrinkage is a regularization technique that recursively shrinks node predictions towards parent node predictions. 
For details see Agarwal et al. (2022).
}
\examples{
## Hierarchical shrinkage for a probablity forest
rf <- ranger(Species ~ ., iris, node.stats = TRUE, probability = TRUE)
hshrink(rf, lambda = 5)
}
\references{
\itemize{
  \item Agarwal, A., Tan, Y.S., Ronen, O., Singh, C. & Yu, B. (2022). Hierarchical Shrinkage: Improving the accuracy and interpretability of tree-based models. Proceedings of the 39th International Conference on Machine Learning, PMLR 162:111-135.
  }
}
\author{
Marvin N. Wright
}