File: ForestSurvival.cpp

package info (click to toggle)
r-cran-ranger 0.18.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,160 kB
  • sloc: cpp: 8,350; sh: 13; makefile: 5; ansic: 2
file content (364 lines) | stat: -rw-r--r-- 12,444 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/*-------------------------------------------------------------------------------
 This file is part of ranger.

 Copyright (c) [2014-2018] [Marvin N. Wright]

 This software may be modified and distributed under the terms of the MIT license.

 Please note that the C++ core of ranger is distributed under MIT license and the
 R package "ranger" under GPL3 license.
 #-------------------------------------------------------------------------------*/

#include <set>
#include <algorithm>
#include <cmath>
#include <stdexcept>
#include <string>

#include "utility.h"
#include "ForestSurvival.h"
#include "Data.h"

namespace ranger {

void ForestSurvival::loadForest(size_t num_trees, std::vector<std::vector<std::vector<size_t>> >& forest_child_nodeIDs,
    std::vector<std::vector<size_t>>& forest_split_varIDs, std::vector<std::vector<double>>& forest_split_values,
    std::vector<std::vector<std::vector<double>> >& forest_chf, std::vector<double>& unique_timepoints,
    std::vector<bool>& is_ordered_variable) {

  this->num_trees = num_trees;
  this->unique_timepoints = unique_timepoints;
  data->setIsOrderedVariable(is_ordered_variable);

  // Create trees
  trees.reserve(num_trees);
  for (size_t i = 0; i < num_trees; ++i) {
    trees.push_back(
        std::make_unique<TreeSurvival>(forest_child_nodeIDs[i], forest_split_varIDs[i], forest_split_values[i],
            forest_chf[i], &this->unique_timepoints, &response_timepointIDs));
  }

  // Create thread ranges
  equalSplit(thread_ranges, 0, num_trees - 1, num_threads);
}

void ForestSurvival::setUniqueTimepoints(const std::vector<double>& time_interest) {
  
  if (time_interest.empty()) {
    // Use all observed unique time points 
    std::set<double> unique_timepoint_set;
    for (size_t i = 0; i < num_samples; ++i) {
      if (data->get_y(i, 1) > 0) {
        unique_timepoint_set.insert(data->get_y(i, 0));
      }
    }
    unique_timepoints.reserve(unique_timepoint_set.size());
    for (auto& t : unique_timepoint_set) {
      unique_timepoints.push_back(t);
    }
  } else {
    // Use the supplied time points of interest
    unique_timepoints = time_interest;
  }
  
  // Create response_timepointIDs
  for (size_t i = 0; i < num_samples; ++i) {
    double value = data->get_y(i, 0);
    
    // If timepoint is already in unique_timepoints, use ID. Else create a new one.
    uint timepointID = 0;
    if (value > unique_timepoints[unique_timepoints.size() - 1]) {
      timepointID = unique_timepoints.size() - 1;
    } else if (value > unique_timepoints[0]) {
      timepointID = std::lower_bound(unique_timepoints.begin(), unique_timepoints.end(), value) - unique_timepoints.begin();
    }
    if (timepointID < 0) {
      timepointID = 0;
    }
    response_timepointIDs.push_back(timepointID);
  }
}

std::vector<std::vector<std::vector<double>>> ForestSurvival::getChf() const {
  std::vector<std::vector<std::vector<double>>> result;
  result.reserve(num_trees);
  for (const auto& tree : trees) {
    const auto& temp = dynamic_cast<const TreeSurvival&>(*tree);
    result.push_back(temp.getChf());
  }
  return result;
}

void ForestSurvival::initInternal() {

  // If mtry not set, use floored square root of number of independent variables.
  if (mtry == 0) {
    unsigned long temp = ceil(sqrt((double) num_independent_variables));
    mtry = std::max((unsigned long) 1, temp);
  }

  // Set minimal node size
  if (min_node_size.size() == 1 && min_node_size[0] == 0) {
    min_node_size[0] = DEFAULT_MIN_NODE_SIZE_SURVIVAL;
  }

  // Set minimal bucket size
  if (min_bucket.size() == 1 && min_bucket[0] == 0) {
    min_bucket[0] = DEFAULT_MIN_BUCKET_SURVIVAL;
  }

  // Sort data if extratrees and not memory saving mode
  if (splitrule == EXTRATREES && !memory_saving_splitting) {
    data->sort();
  }
}

void ForestSurvival::growInternal() {
  
  // If unique time points not set, use observed times
  if (unique_timepoints.empty()) {
    setUniqueTimepoints(std::vector<double>());
  }
  
  
  trees.reserve(num_trees);
  for (size_t i = 0; i < num_trees; ++i) {
    trees.push_back(std::make_unique<TreeSurvival>(&unique_timepoints, &response_timepointIDs));
  }
}

void ForestSurvival::allocatePredictMemory() {
  size_t num_prediction_samples = data->getNumRows();
  size_t num_timepoints = unique_timepoints.size();
  if (predict_all) {
    predictions = std::vector<std::vector<std::vector<double>>>(num_prediction_samples,
        std::vector<std::vector<double>>(num_timepoints, std::vector<double>(num_trees, 0)));
  } else if (prediction_type == TERMINALNODES) {
    predictions = std::vector<std::vector<std::vector<double>>>(1,
        std::vector<std::vector<double>>(num_prediction_samples, std::vector<double>(num_trees, 0)));
  } else {
    predictions = std::vector<std::vector<std::vector<double>>>(1,
        std::vector<std::vector<double>>(num_prediction_samples, std::vector<double>(num_timepoints, 0)));
  }
}

void ForestSurvival::predictInternal(size_t sample_idx) {
  // For each timepoint sum over trees
  if (predict_all) {
    for (size_t j = 0; j < unique_timepoints.size(); ++j) {
      for (size_t k = 0; k < num_trees; ++k) {
        predictions[sample_idx][j][k] = getTreePrediction(k, sample_idx)[j];
      }
    }
  } else if (prediction_type == TERMINALNODES) {
    for (size_t k = 0; k < num_trees; ++k) {
      predictions[0][sample_idx][k] = getTreePredictionTerminalNodeID(k, sample_idx);
    }
  } else {
    for (size_t j = 0; j < unique_timepoints.size(); ++j) {
      double sample_time_prediction = 0;
      for (size_t k = 0; k < num_trees; ++k) {
        sample_time_prediction += getTreePrediction(k, sample_idx)[j];
      }
      predictions[0][sample_idx][j] = sample_time_prediction / num_trees;
    }
  }
}

void ForestSurvival::computePredictionErrorInternal() {

  size_t num_timepoints = unique_timepoints.size();

  // For each sample sum over trees where sample is OOB
  std::vector<size_t> samples_oob_count;
  samples_oob_count.resize(num_samples, 0);
  predictions = std::vector<std::vector<std::vector<double>>>(1,
      std::vector<std::vector<double>>(num_samples, std::vector<double>(num_timepoints, 0)));

  for (size_t tree_idx = 0; tree_idx < num_trees; ++tree_idx) {
    for (size_t sample_idx = 0; sample_idx < trees[tree_idx]->getNumSamplesOob(); ++sample_idx) {
      size_t sampleID = trees[tree_idx]->getOobSampleIDs()[sample_idx];
      std::vector<double> tree_sample_chf = getTreePrediction(tree_idx, sample_idx);

      for (size_t time_idx = 0; time_idx < tree_sample_chf.size(); ++time_idx) {
        predictions[0][sampleID][time_idx] += tree_sample_chf[time_idx];
      }
      ++samples_oob_count[sampleID];
    }
  }

  // Divide sample predictions by number of trees where sample is oob and compute summed chf for samples
  std::vector<double> sum_chf;
  sum_chf.reserve(predictions[0].size());
  std::vector<size_t> oob_sampleIDs;
  oob_sampleIDs.reserve(predictions[0].size());
  for (size_t i = 0; i < predictions[0].size(); ++i) {
    if (samples_oob_count[i] > 0) {
      double sum = 0;
      for (size_t j = 0; j < predictions[0][i].size(); ++j) {
        predictions[0][i][j] /= samples_oob_count[i];
        sum += predictions[0][i][j];
      }
      sum_chf.push_back(sum);
      oob_sampleIDs.push_back(i);
    }
  }

  // Use all samples which are OOB at least once
  overall_prediction_error = 1 - computeConcordanceIndex(*data, sum_chf, oob_sampleIDs, NULL);
}

// #nocov start
void ForestSurvival::writeOutputInternal() {
  if (verbose_out) {
    *verbose_out << "Tree type:                         " << "Survival" << std::endl;
    if (dependent_variable_names.size() >= 2) {
      *verbose_out << "Status variable name:              " << dependent_variable_names[1] << std::endl;
    }
  }
}

void ForestSurvival::writeConfusionFile() {

  // Open confusion file for writing
  std::string filename = output_prefix + ".confusion";
  std::ofstream outfile;
  outfile.open(filename, std::ios::out);
  if (!outfile.good()) {
    throw std::runtime_error("Could not write to confusion file: " + filename + ".");
  }

  // Write confusion to file
  outfile << "Overall OOB prediction error (1 - C): " << overall_prediction_error << std::endl;

  outfile.close();
  if (verbose_out)
    *verbose_out << "Saved prediction error to file " << filename << "." << std::endl;

}

void ForestSurvival::writePredictionFile() {

  // Open prediction file for writing
  std::string filename = output_prefix + ".prediction";
  std::ofstream outfile;
  outfile.open(filename, std::ios::out);
  if (!outfile.good()) {
    throw std::runtime_error("Could not write to prediction file: " + filename + ".");
  }

  // Write
  outfile << "Unique timepoints: " << std::endl;
  for (auto& timepoint : unique_timepoints) {
    outfile << timepoint << " ";
  }
  outfile << std::endl << std::endl;

  outfile << "Cumulative hazard function, one row per sample: " << std::endl;
  if (predict_all) {
    for (size_t k = 0; k < num_trees; ++k) {
      outfile << "Tree " << k << ":" << std::endl;
      for (size_t i = 0; i < predictions.size(); ++i) {
        for (size_t j = 0; j < predictions[i].size(); ++j) {
          outfile << predictions[i][j][k] << " ";
        }
        outfile << std::endl;
      }
      outfile << std::endl;
    }
  } else {
    for (size_t i = 0; i < predictions.size(); ++i) {
      for (size_t j = 0; j < predictions[i].size(); ++j) {
        for (size_t k = 0; k < predictions[i][j].size(); ++k) {
          outfile << predictions[i][j][k] << " ";
        }
        outfile << std::endl;
      }
    }
  }

  if (verbose_out)
    *verbose_out << "Saved predictions to file " << filename << "." << std::endl;
}

void ForestSurvival::saveToFileInternal(std::ofstream& outfile) {

  // Write num_variables
  outfile.write((char*) &num_independent_variables, sizeof(num_independent_variables));

  // Write treetype
  TreeType treetype = TREE_SURVIVAL;
  outfile.write((char*) &treetype, sizeof(treetype));

  // Write unique timepoints
  saveVector1D(unique_timepoints, outfile);
}

void ForestSurvival::loadFromFileInternal(std::ifstream& infile) {

  // Read number of variables
  size_t num_variables_saved;
  infile.read((char*) &num_variables_saved, sizeof(num_variables_saved));

  // Read treetype
  TreeType treetype;
  infile.read((char*) &treetype, sizeof(treetype));
  if (treetype != TREE_SURVIVAL) {
    throw std::runtime_error("Wrong treetype. Loaded file is not a survival forest.");
  }

  // Read unique timepoints
  unique_timepoints.clear();
  readVector1D(unique_timepoints, infile);

  for (size_t i = 0; i < num_trees; ++i) {

    // Read data
    std::vector<std::vector<size_t>> child_nodeIDs;
    readVector2D(child_nodeIDs, infile);
    std::vector<size_t> split_varIDs;
    readVector1D(split_varIDs, infile);
    std::vector<double> split_values;
    readVector1D(split_values, infile);

    // Read chf
    std::vector<size_t> terminal_nodes;
    readVector1D(terminal_nodes, infile);
    std::vector<std::vector<double>> chf_vector;
    readVector2D(chf_vector, infile);

    // Convert chf to vector with empty elements for non-terminal nodes
    std::vector<std::vector<double>> chf;
    chf.resize(child_nodeIDs[0].size(), std::vector<double>());
    //    for (size_t i = 0; i < child_nodeIDs.size(); ++i) {
    //      chf.push_back(std::vector<double>());
    //    }
    for (size_t j = 0; j < terminal_nodes.size(); ++j) {
      chf[terminal_nodes[j]] = chf_vector[j];
    }

    // If dependent variable not in test data, throw error
    if (num_variables_saved != num_independent_variables) {
      throw std::runtime_error("Number of independent variables in data does not match with the loaded forest.");
    }

    // Create tree
    trees.push_back(
        std::make_unique<TreeSurvival>(child_nodeIDs, split_varIDs, split_values, chf, &unique_timepoints,
            &response_timepointIDs));
  }
}

const std::vector<double>& ForestSurvival::getTreePrediction(size_t tree_idx, size_t sample_idx) const {
  const auto& tree = dynamic_cast<const TreeSurvival&>(*trees[tree_idx]);
  return tree.getPrediction(sample_idx);
}

size_t ForestSurvival::getTreePredictionTerminalNodeID(size_t tree_idx, size_t sample_idx) const {
  const auto& tree = dynamic_cast<const TreeSurvival&>(*trees[tree_idx]);
  return tree.getPredictionTerminalNodeID(sample_idx);
}

// #nocov end

}// namespace ranger